Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the probability that a randomly chosen customer has purchased a standard-sized phone or a Phone II, we need to follow a series of steps:
1. Calculate the total number of standard-sized phone purchases:
- Standard for Phone I: [tex]\(43\)[/tex]
- Standard for Phone II: [tex]\(41\)[/tex]
- Standard for Phone III: [tex]\(29\)[/tex]
[tex]\[ \text{Total standard purchases} = 43 + 41 + 29 = 113 \][/tex]
2. Calculate the total number of Phone II purchases:
- Mini for Phone II: [tex]\(23\)[/tex]
- Standard for Phone II: [tex]\(41\)[/tex]
- Maximum for Phone II: [tex]\(17\)[/tex]
[tex]\[ \text{Total Phone II purchases} = 23 + 41 + 17 = 81 \][/tex]
3. Calculate the total number of customers:
- Mini purchases: [tex]\(7 + 23 + 31 = 61\)[/tex]
- Standard purchases: [tex]\(43 + 41 + 29 = 113\)[/tex]
- Maximum purchases: [tex]\(2 + 17 + 13 = 32\)[/tex]
[tex]\[ \text{Total purchases} = 61 + 113 + 32 = 206 \][/tex]
4. Calculate the overlap between standard-sized phones and Phone II:
- Since we already considered the sum of standard and Phone II purchases, the overlap here (people who bought Standard sized Phone II) is:
[tex]\[ \text{Overlap} = 41 \][/tex]
5. Apply the formula for the union of two sets:
- The formula we use is [tex]\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)[/tex]
Where:
[tex]\[ P(A) = \text{Total number of standard purchases} = 113 \][/tex]
[tex]\[ P(B) = \text{Total number of Phone II purchases} = 81 \][/tex]
[tex]\[ P(A \cap B) = \text{Overlap} = 41 \][/tex]
6. Calculate the probability:
[tex]\[ \text{Probability} = \frac{P(A) + P(B) - P(A \cap B)}{\text{Total purchases}} \][/tex]
[tex]\[ \text{Probability} = \frac{113 + 81 - 41}{206} = \frac{113 + 81 - 41}{206} = \frac{153}{206} \][/tex]
7. Simplify the fraction to its simplest form:
By evaluating the fraction, we achieve:
[tex]\[ \frac{153}{206} \approx 0.7427184466019418 \][/tex]
Thus, the probability that a randomly chosen customer purchased a standard-sized phone or a Phone II is approximately [tex]\(0.7427\)[/tex], or roughly [tex]\(74.27\%\)[/tex].
1. Calculate the total number of standard-sized phone purchases:
- Standard for Phone I: [tex]\(43\)[/tex]
- Standard for Phone II: [tex]\(41\)[/tex]
- Standard for Phone III: [tex]\(29\)[/tex]
[tex]\[ \text{Total standard purchases} = 43 + 41 + 29 = 113 \][/tex]
2. Calculate the total number of Phone II purchases:
- Mini for Phone II: [tex]\(23\)[/tex]
- Standard for Phone II: [tex]\(41\)[/tex]
- Maximum for Phone II: [tex]\(17\)[/tex]
[tex]\[ \text{Total Phone II purchases} = 23 + 41 + 17 = 81 \][/tex]
3. Calculate the total number of customers:
- Mini purchases: [tex]\(7 + 23 + 31 = 61\)[/tex]
- Standard purchases: [tex]\(43 + 41 + 29 = 113\)[/tex]
- Maximum purchases: [tex]\(2 + 17 + 13 = 32\)[/tex]
[tex]\[ \text{Total purchases} = 61 + 113 + 32 = 206 \][/tex]
4. Calculate the overlap between standard-sized phones and Phone II:
- Since we already considered the sum of standard and Phone II purchases, the overlap here (people who bought Standard sized Phone II) is:
[tex]\[ \text{Overlap} = 41 \][/tex]
5. Apply the formula for the union of two sets:
- The formula we use is [tex]\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)[/tex]
Where:
[tex]\[ P(A) = \text{Total number of standard purchases} = 113 \][/tex]
[tex]\[ P(B) = \text{Total number of Phone II purchases} = 81 \][/tex]
[tex]\[ P(A \cap B) = \text{Overlap} = 41 \][/tex]
6. Calculate the probability:
[tex]\[ \text{Probability} = \frac{P(A) + P(B) - P(A \cap B)}{\text{Total purchases}} \][/tex]
[tex]\[ \text{Probability} = \frac{113 + 81 - 41}{206} = \frac{113 + 81 - 41}{206} = \frac{153}{206} \][/tex]
7. Simplify the fraction to its simplest form:
By evaluating the fraction, we achieve:
[tex]\[ \frac{153}{206} \approx 0.7427184466019418 \][/tex]
Thus, the probability that a randomly chosen customer purchased a standard-sized phone or a Phone II is approximately [tex]\(0.7427\)[/tex], or roughly [tex]\(74.27\%\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.