Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which table represents a linear function, we need to check whether the change in [tex]\( y \)[/tex] is proportional to the change in [tex]\( x \)[/tex] for each table.
### Table A
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 0 & 0 & -1 & -2 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(0 - 0 = 0\)[/tex], [tex]\(-1 - 0 = -1\)[/tex], [tex]\(-2 - (-1) = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{0}{1}, \frac{-1}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table B
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 6 & 12 & 18 & 24 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(12 - 6 = 6\)[/tex], [tex]\(18 - 12 = 6\)[/tex], [tex]\(24 - 18 = 6\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{6}{1}, \frac{6}{1}, \frac{6}{1} \)[/tex]. These ratios are the same for all intervals, indicating a linear function.
### Table C
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 3 & 2 & 0 & 1 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(2 - 3 = -1\)[/tex], [tex]\(0 - 2 = -2\)[/tex], [tex]\(1 - 0 = 1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-1}{1}, \frac{-2}{1}, \frac{1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table D
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 11 & 7 & 5 & 4 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(7 - 11 = -4\)[/tex], [tex]\(5 - 7 = -2\)[/tex], [tex]\(4 - 5 = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-4}{1}, \frac{-2}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Conclusion
Only Table B shows a consistent ratio of the change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] across all intervals. Therefore, Table B represents a linear function.
### Table A
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 0 & 0 & -1 & -2 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(0 - 0 = 0\)[/tex], [tex]\(-1 - 0 = -1\)[/tex], [tex]\(-2 - (-1) = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{0}{1}, \frac{-1}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table B
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 6 & 12 & 18 & 24 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(12 - 6 = 6\)[/tex], [tex]\(18 - 12 = 6\)[/tex], [tex]\(24 - 18 = 6\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{6}{1}, \frac{6}{1}, \frac{6}{1} \)[/tex]. These ratios are the same for all intervals, indicating a linear function.
### Table C
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 3 & 2 & 0 & 1 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(2 - 3 = -1\)[/tex], [tex]\(0 - 2 = -2\)[/tex], [tex]\(1 - 0 = 1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-1}{1}, \frac{-2}{1}, \frac{1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table D
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 11 & 7 & 5 & 4 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(7 - 11 = -4\)[/tex], [tex]\(5 - 7 = -2\)[/tex], [tex]\(4 - 5 = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-4}{1}, \frac{-2}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Conclusion
Only Table B shows a consistent ratio of the change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] across all intervals. Therefore, Table B represents a linear function.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.