Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which table represents a linear function, we need to check whether the change in [tex]\( y \)[/tex] is proportional to the change in [tex]\( x \)[/tex] for each table.
### Table A
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 0 & 0 & -1 & -2 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(0 - 0 = 0\)[/tex], [tex]\(-1 - 0 = -1\)[/tex], [tex]\(-2 - (-1) = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{0}{1}, \frac{-1}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table B
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 6 & 12 & 18 & 24 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(12 - 6 = 6\)[/tex], [tex]\(18 - 12 = 6\)[/tex], [tex]\(24 - 18 = 6\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{6}{1}, \frac{6}{1}, \frac{6}{1} \)[/tex]. These ratios are the same for all intervals, indicating a linear function.
### Table C
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 3 & 2 & 0 & 1 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(2 - 3 = -1\)[/tex], [tex]\(0 - 2 = -2\)[/tex], [tex]\(1 - 0 = 1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-1}{1}, \frac{-2}{1}, \frac{1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table D
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 11 & 7 & 5 & 4 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(7 - 11 = -4\)[/tex], [tex]\(5 - 7 = -2\)[/tex], [tex]\(4 - 5 = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-4}{1}, \frac{-2}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Conclusion
Only Table B shows a consistent ratio of the change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] across all intervals. Therefore, Table B represents a linear function.
### Table A
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 0 & 0 & -1 & -2 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(0 - 0 = 0\)[/tex], [tex]\(-1 - 0 = -1\)[/tex], [tex]\(-2 - (-1) = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{0}{1}, \frac{-1}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table B
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 6 & 12 & 18 & 24 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(12 - 6 = 6\)[/tex], [tex]\(18 - 12 = 6\)[/tex], [tex]\(24 - 18 = 6\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{6}{1}, \frac{6}{1}, \frac{6}{1} \)[/tex]. These ratios are the same for all intervals, indicating a linear function.
### Table C
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 3 & 2 & 0 & 1 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(2 - 3 = -1\)[/tex], [tex]\(0 - 2 = -2\)[/tex], [tex]\(1 - 0 = 1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-1}{1}, \frac{-2}{1}, \frac{1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Table D
[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & 0 & 1 & 2 & 3 \\ \hline $y$ & 11 & 7 & 5 & 4 \\ \hline \end{tabular} \][/tex]
- Difference in [tex]\( y \)[/tex]: [tex]\(7 - 11 = -4\)[/tex], [tex]\(5 - 7 = -2\)[/tex], [tex]\(4 - 5 = -1\)[/tex]
- Change in [tex]\( x \)[/tex] is consistent (1 unit).
The ratios of change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] are: [tex]\( \frac{-4}{1}, \frac{-2}{1}, \frac{-1}{1} \)[/tex]. These ratios are not the same for all intervals.
### Conclusion
Only Table B shows a consistent ratio of the change in [tex]\( y \)[/tex] to change in [tex]\( x \)[/tex] across all intervals. Therefore, Table B represents a linear function.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.