Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the slope and [tex]\( y \)[/tex]-intercept of the linear function passing through the points [tex]\((0, -3)\)[/tex] and [tex]\((6, 15)\)[/tex], we will follow a step-by-step approach.
### Step 1: Determine the slope (m)
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((x_1, y_1) = (0, -3)\)[/tex] and [tex]\((x_2, y_2) = (6, 15)\)[/tex] into the formula:
[tex]\[ m = \frac{15 - (-3)}{6 - 0} = \frac{15 + 3}{6} = \frac{18}{6} = 3 \][/tex]
So, the slope [tex]\( m \)[/tex] is 3.
### Step 2: Determine the [tex]\( y \)[/tex]-intercept
The [tex]\( y \)[/tex]-intercept of a linear function is the point where the line crosses the [tex]\( y \)[/tex]-axis. This happens when [tex]\( x = 0 \)[/tex].
From the given points, we already know that one of the points is [tex]\((0, -3)\)[/tex]. This means that the [tex]\( y \)[/tex]-intercept is [tex]\((0, -3)\)[/tex].
### Step 3: Verify the options
Given the slope [tex]\( m = 3 \)[/tex] and the [tex]\( y \)[/tex]-intercept as [tex]\((0, -3)\)[/tex], we can now verify the correct option:
- Option A states the slope is [tex]\(\frac{1}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is [tex]\((-3,0)\)[/tex]. This is incorrect.
- Option B states the slope is [tex]\(\frac{1}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is [tex]\((0,-3)\)[/tex]. This is incorrect.
- Option C states the slope is 3 and the [tex]\( y \)[/tex]-intercept is [tex]\((0,-3)\)[/tex]. This is correct.
- Option D states the slope is -3 and the [tex]\( y \)[/tex]-intercept is [tex]\((0,-3)\)[/tex]. This is incorrect.
Therefore, the correct answer is:
C. The slope is 3. The [tex]\( y \)[/tex]-intercept is [tex]\((0, -3)\)[/tex].
### Step 1: Determine the slope (m)
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((x_1, y_1) = (0, -3)\)[/tex] and [tex]\((x_2, y_2) = (6, 15)\)[/tex] into the formula:
[tex]\[ m = \frac{15 - (-3)}{6 - 0} = \frac{15 + 3}{6} = \frac{18}{6} = 3 \][/tex]
So, the slope [tex]\( m \)[/tex] is 3.
### Step 2: Determine the [tex]\( y \)[/tex]-intercept
The [tex]\( y \)[/tex]-intercept of a linear function is the point where the line crosses the [tex]\( y \)[/tex]-axis. This happens when [tex]\( x = 0 \)[/tex].
From the given points, we already know that one of the points is [tex]\((0, -3)\)[/tex]. This means that the [tex]\( y \)[/tex]-intercept is [tex]\((0, -3)\)[/tex].
### Step 3: Verify the options
Given the slope [tex]\( m = 3 \)[/tex] and the [tex]\( y \)[/tex]-intercept as [tex]\((0, -3)\)[/tex], we can now verify the correct option:
- Option A states the slope is [tex]\(\frac{1}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is [tex]\((-3,0)\)[/tex]. This is incorrect.
- Option B states the slope is [tex]\(\frac{1}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is [tex]\((0,-3)\)[/tex]. This is incorrect.
- Option C states the slope is 3 and the [tex]\( y \)[/tex]-intercept is [tex]\((0,-3)\)[/tex]. This is correct.
- Option D states the slope is -3 and the [tex]\( y \)[/tex]-intercept is [tex]\((0,-3)\)[/tex]. This is incorrect.
Therefore, the correct answer is:
C. The slope is 3. The [tex]\( y \)[/tex]-intercept is [tex]\((0, -3)\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.