At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's differentiate each function with respect to their independent variable.
### 8.1) Differentiating [tex]\( y = \ln |a t + 3| + \ln t \)[/tex] with respect to [tex]\( t \)[/tex]
1. Recall the properties and differentiation rules of logarithmic functions.
2. For [tex]\( \ln |a t + 3| \)[/tex], we use the chain rule:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{d}{dt}\left(\ln u\right) \cdot \frac{du}{dt}, \quad \text{where} \ u = |a t + 3|. \][/tex]
Differentiating [tex]\( \ln u \)[/tex] gives:
[tex]\[ \frac{d}{dt}\left(\ln u\right) = \frac{1}{u}. \][/tex]
Now, we need [tex]\( \frac{du}{dt} \)[/tex] where [tex]\( u = |a t + 3| \)[/tex]. The absolute value function means we need to consider the derivative inside the absolute value:
[tex]\[ \frac{du}{dt} = a \cdot \frac{a t + 3}{|a t + 3|}. \][/tex]
Combining these:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{a}{a t + 3}. \][/tex]
3. For [tex]\( \ln t \)[/tex], the derivative is straightforward:
[tex]\[ \frac{d}{dt}(\ln t) = \frac{1}{t}. \][/tex]
4. Combining these results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}. \][/tex]
### 8.2) Differentiating [tex]\( g(t) = 2^{\ln 2 t} + \ln e^{2 t} \)[/tex] with respect to [tex]\( t \)[/tex]
1. Consider the function [tex]\( 2^{\ln 2 t} \)[/tex]. This can be simplified using the properties of exponents and logarithms:
[tex]\[ 2^{\ln 2 t} = (2^{\ln 2})^t = e^{(\ln 2) \ln 2 t} = e^{(\ln 2)^2 t}. \][/tex]
Then, we differentiate:
[tex]\[ \frac{d}{dt} \left( e^{(\ln 2)^2 t} \right) = e^{(\ln 2)^2 t} \cdot (\ln 2)^2. \][/tex]
2. For [tex]\( \ln e^{2 t} \)[/tex], recall that [tex]\( \ln e^u = u \)[/tex]:
[tex]\[ \ln e^{2 t} = 2 t, \][/tex]
and its derivative:
[tex]\[ \frac{d}{dt} (2 t) = 2. \][/tex]
3. Combining these:
[tex]\[ \frac{dg}{dt} = e^{(\ln 2)^2 t} \cdot (\ln 2)^2 + 2. \][/tex]
To get the exact form of [tex]\( g(t) \)[/tex]:
[tex]\[ e^{(\ln 2)^2 t} \cdot (\ln 2)^2 \text{ can be written as } 2^{t \ln 2} \cdot (\ln 2)^2. \][/tex]
Combining all results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}, \quad \frac{dg}{dt} = 2^{t \ln 2} \cdot (\ln 2)^2 + 2. \][/tex]
### 8.1) Differentiating [tex]\( y = \ln |a t + 3| + \ln t \)[/tex] with respect to [tex]\( t \)[/tex]
1. Recall the properties and differentiation rules of logarithmic functions.
2. For [tex]\( \ln |a t + 3| \)[/tex], we use the chain rule:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{d}{dt}\left(\ln u\right) \cdot \frac{du}{dt}, \quad \text{where} \ u = |a t + 3|. \][/tex]
Differentiating [tex]\( \ln u \)[/tex] gives:
[tex]\[ \frac{d}{dt}\left(\ln u\right) = \frac{1}{u}. \][/tex]
Now, we need [tex]\( \frac{du}{dt} \)[/tex] where [tex]\( u = |a t + 3| \)[/tex]. The absolute value function means we need to consider the derivative inside the absolute value:
[tex]\[ \frac{du}{dt} = a \cdot \frac{a t + 3}{|a t + 3|}. \][/tex]
Combining these:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{a}{a t + 3}. \][/tex]
3. For [tex]\( \ln t \)[/tex], the derivative is straightforward:
[tex]\[ \frac{d}{dt}(\ln t) = \frac{1}{t}. \][/tex]
4. Combining these results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}. \][/tex]
### 8.2) Differentiating [tex]\( g(t) = 2^{\ln 2 t} + \ln e^{2 t} \)[/tex] with respect to [tex]\( t \)[/tex]
1. Consider the function [tex]\( 2^{\ln 2 t} \)[/tex]. This can be simplified using the properties of exponents and logarithms:
[tex]\[ 2^{\ln 2 t} = (2^{\ln 2})^t = e^{(\ln 2) \ln 2 t} = e^{(\ln 2)^2 t}. \][/tex]
Then, we differentiate:
[tex]\[ \frac{d}{dt} \left( e^{(\ln 2)^2 t} \right) = e^{(\ln 2)^2 t} \cdot (\ln 2)^2. \][/tex]
2. For [tex]\( \ln e^{2 t} \)[/tex], recall that [tex]\( \ln e^u = u \)[/tex]:
[tex]\[ \ln e^{2 t} = 2 t, \][/tex]
and its derivative:
[tex]\[ \frac{d}{dt} (2 t) = 2. \][/tex]
3. Combining these:
[tex]\[ \frac{dg}{dt} = e^{(\ln 2)^2 t} \cdot (\ln 2)^2 + 2. \][/tex]
To get the exact form of [tex]\( g(t) \)[/tex]:
[tex]\[ e^{(\ln 2)^2 t} \cdot (\ln 2)^2 \text{ can be written as } 2^{t \ln 2} \cdot (\ln 2)^2. \][/tex]
Combining all results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}, \quad \frac{dg}{dt} = 2^{t \ln 2} \cdot (\ln 2)^2 + 2. \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.