Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's differentiate each function with respect to their independent variable.
### 8.1) Differentiating [tex]\( y = \ln |a t + 3| + \ln t \)[/tex] with respect to [tex]\( t \)[/tex]
1. Recall the properties and differentiation rules of logarithmic functions.
2. For [tex]\( \ln |a t + 3| \)[/tex], we use the chain rule:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{d}{dt}\left(\ln u\right) \cdot \frac{du}{dt}, \quad \text{where} \ u = |a t + 3|. \][/tex]
Differentiating [tex]\( \ln u \)[/tex] gives:
[tex]\[ \frac{d}{dt}\left(\ln u\right) = \frac{1}{u}. \][/tex]
Now, we need [tex]\( \frac{du}{dt} \)[/tex] where [tex]\( u = |a t + 3| \)[/tex]. The absolute value function means we need to consider the derivative inside the absolute value:
[tex]\[ \frac{du}{dt} = a \cdot \frac{a t + 3}{|a t + 3|}. \][/tex]
Combining these:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{a}{a t + 3}. \][/tex]
3. For [tex]\( \ln t \)[/tex], the derivative is straightforward:
[tex]\[ \frac{d}{dt}(\ln t) = \frac{1}{t}. \][/tex]
4. Combining these results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}. \][/tex]
### 8.2) Differentiating [tex]\( g(t) = 2^{\ln 2 t} + \ln e^{2 t} \)[/tex] with respect to [tex]\( t \)[/tex]
1. Consider the function [tex]\( 2^{\ln 2 t} \)[/tex]. This can be simplified using the properties of exponents and logarithms:
[tex]\[ 2^{\ln 2 t} = (2^{\ln 2})^t = e^{(\ln 2) \ln 2 t} = e^{(\ln 2)^2 t}. \][/tex]
Then, we differentiate:
[tex]\[ \frac{d}{dt} \left( e^{(\ln 2)^2 t} \right) = e^{(\ln 2)^2 t} \cdot (\ln 2)^2. \][/tex]
2. For [tex]\( \ln e^{2 t} \)[/tex], recall that [tex]\( \ln e^u = u \)[/tex]:
[tex]\[ \ln e^{2 t} = 2 t, \][/tex]
and its derivative:
[tex]\[ \frac{d}{dt} (2 t) = 2. \][/tex]
3. Combining these:
[tex]\[ \frac{dg}{dt} = e^{(\ln 2)^2 t} \cdot (\ln 2)^2 + 2. \][/tex]
To get the exact form of [tex]\( g(t) \)[/tex]:
[tex]\[ e^{(\ln 2)^2 t} \cdot (\ln 2)^2 \text{ can be written as } 2^{t \ln 2} \cdot (\ln 2)^2. \][/tex]
Combining all results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}, \quad \frac{dg}{dt} = 2^{t \ln 2} \cdot (\ln 2)^2 + 2. \][/tex]
### 8.1) Differentiating [tex]\( y = \ln |a t + 3| + \ln t \)[/tex] with respect to [tex]\( t \)[/tex]
1. Recall the properties and differentiation rules of logarithmic functions.
2. For [tex]\( \ln |a t + 3| \)[/tex], we use the chain rule:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{d}{dt}\left(\ln u\right) \cdot \frac{du}{dt}, \quad \text{where} \ u = |a t + 3|. \][/tex]
Differentiating [tex]\( \ln u \)[/tex] gives:
[tex]\[ \frac{d}{dt}\left(\ln u\right) = \frac{1}{u}. \][/tex]
Now, we need [tex]\( \frac{du}{dt} \)[/tex] where [tex]\( u = |a t + 3| \)[/tex]. The absolute value function means we need to consider the derivative inside the absolute value:
[tex]\[ \frac{du}{dt} = a \cdot \frac{a t + 3}{|a t + 3|}. \][/tex]
Combining these:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{a}{a t + 3}. \][/tex]
3. For [tex]\( \ln t \)[/tex], the derivative is straightforward:
[tex]\[ \frac{d}{dt}(\ln t) = \frac{1}{t}. \][/tex]
4. Combining these results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}. \][/tex]
### 8.2) Differentiating [tex]\( g(t) = 2^{\ln 2 t} + \ln e^{2 t} \)[/tex] with respect to [tex]\( t \)[/tex]
1. Consider the function [tex]\( 2^{\ln 2 t} \)[/tex]. This can be simplified using the properties of exponents and logarithms:
[tex]\[ 2^{\ln 2 t} = (2^{\ln 2})^t = e^{(\ln 2) \ln 2 t} = e^{(\ln 2)^2 t}. \][/tex]
Then, we differentiate:
[tex]\[ \frac{d}{dt} \left( e^{(\ln 2)^2 t} \right) = e^{(\ln 2)^2 t} \cdot (\ln 2)^2. \][/tex]
2. For [tex]\( \ln e^{2 t} \)[/tex], recall that [tex]\( \ln e^u = u \)[/tex]:
[tex]\[ \ln e^{2 t} = 2 t, \][/tex]
and its derivative:
[tex]\[ \frac{d}{dt} (2 t) = 2. \][/tex]
3. Combining these:
[tex]\[ \frac{dg}{dt} = e^{(\ln 2)^2 t} \cdot (\ln 2)^2 + 2. \][/tex]
To get the exact form of [tex]\( g(t) \)[/tex]:
[tex]\[ e^{(\ln 2)^2 t} \cdot (\ln 2)^2 \text{ can be written as } 2^{t \ln 2} \cdot (\ln 2)^2. \][/tex]
Combining all results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}, \quad \frac{dg}{dt} = 2^{t \ln 2} \cdot (\ln 2)^2 + 2. \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.