Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's begin by defining the variables and translating the problem statement into mathematical equations.
1. Defining the Variables:
Let [tex]\( x \)[/tex] represent Peter's age in years.
Let [tex]\( y \)[/tex] represent Phil's age in years.
2. Translating the Statements:
- Phil's age is 7 years more than [tex]\(\frac{1}{5}\)[/tex] of Peter's age.
Mathematically, this can be written as:
[tex]\[ y = \frac{1}{5} x + 7 \][/tex]
- Four times Phil's age is 2 years less than twice Peter's age.
Mathematically, this can be written as:
[tex]\[ 4y = 2x - 2 \][/tex]
3. Substituting the First Equation into the Second:
We have [tex]\( y \)[/tex] expressed in terms of [tex]\( x \)[/tex] from the first equation:
[tex]\[ y = \frac{1}{5} x + 7 \][/tex]
Substituting [tex]\( y \)[/tex] into the second equation:
[tex]\[ 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \][/tex]
4. Checking the Given Equations:
From the problem, we need to check which of the given equations match this situation.
- The equation [tex]\( 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \)[/tex] matches our derived equation exactly.
Let's simplify it to determine [tex]\( x \)[/tex]:
[tex]\[ 4 \left(\frac{1}{5} x + 7 \right) = 2x - 2 \][/tex]
[tex]\[ \frac{4}{5} x + 28 = 2x - 2 \][/tex]
5. Solving the Equation for [tex]\( x \)[/tex]:
Bring all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other:
[tex]\[ 28 + 2 = 2x - \frac{4}{5} x \][/tex]
[tex]\[ 30 = 2x - \frac{4}{5} x \][/tex]
Combine the [tex]\( x \)[/tex] terms on the right side:
[tex]\[ 30 = \frac{10}{5} x - \frac{4}{5} x \][/tex]
[tex]\[ 30 = \frac{6}{5} x \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 30 \cdot\frac{5}{6} \][/tex]
[tex]\[ x = 25 \][/tex]
6. Identifying the Correct Answer:
Peter's age [tex]\( x = 25 \)[/tex] satisfies the equation derived from the problem.
7. Conclusion:
The correct equations representing the situation are:
[tex]\[ y = \frac{1}{5} x + 7 \][/tex]
[tex]\[ 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \][/tex]
The solution to the equations is:
[tex]\[ x = 25 \][/tex]
Thus, the correct equations and the correct value of [tex]\( x \)[/tex] are:
- [tex]\( 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \)[/tex]
- [tex]\( x = 25 \)[/tex]
1. Defining the Variables:
Let [tex]\( x \)[/tex] represent Peter's age in years.
Let [tex]\( y \)[/tex] represent Phil's age in years.
2. Translating the Statements:
- Phil's age is 7 years more than [tex]\(\frac{1}{5}\)[/tex] of Peter's age.
Mathematically, this can be written as:
[tex]\[ y = \frac{1}{5} x + 7 \][/tex]
- Four times Phil's age is 2 years less than twice Peter's age.
Mathematically, this can be written as:
[tex]\[ 4y = 2x - 2 \][/tex]
3. Substituting the First Equation into the Second:
We have [tex]\( y \)[/tex] expressed in terms of [tex]\( x \)[/tex] from the first equation:
[tex]\[ y = \frac{1}{5} x + 7 \][/tex]
Substituting [tex]\( y \)[/tex] into the second equation:
[tex]\[ 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \][/tex]
4. Checking the Given Equations:
From the problem, we need to check which of the given equations match this situation.
- The equation [tex]\( 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \)[/tex] matches our derived equation exactly.
Let's simplify it to determine [tex]\( x \)[/tex]:
[tex]\[ 4 \left(\frac{1}{5} x + 7 \right) = 2x - 2 \][/tex]
[tex]\[ \frac{4}{5} x + 28 = 2x - 2 \][/tex]
5. Solving the Equation for [tex]\( x \)[/tex]:
Bring all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other:
[tex]\[ 28 + 2 = 2x - \frac{4}{5} x \][/tex]
[tex]\[ 30 = 2x - \frac{4}{5} x \][/tex]
Combine the [tex]\( x \)[/tex] terms on the right side:
[tex]\[ 30 = \frac{10}{5} x - \frac{4}{5} x \][/tex]
[tex]\[ 30 = \frac{6}{5} x \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 30 \cdot\frac{5}{6} \][/tex]
[tex]\[ x = 25 \][/tex]
6. Identifying the Correct Answer:
Peter's age [tex]\( x = 25 \)[/tex] satisfies the equation derived from the problem.
7. Conclusion:
The correct equations representing the situation are:
[tex]\[ y = \frac{1}{5} x + 7 \][/tex]
[tex]\[ 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \][/tex]
The solution to the equations is:
[tex]\[ x = 25 \][/tex]
Thus, the correct equations and the correct value of [tex]\( x \)[/tex] are:
- [tex]\( 4\left(\frac{1}{5} x + 7\right) = 2x - 2 \)[/tex]
- [tex]\( x = 25 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.