Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's analyze the problem step-by-step:
1. Initial Distances:
- Henry's balloon starts at a distance of 25 miles from the town.
- The initial equation for Tasha's balloon is [tex]\( y = 7x + 15 \)[/tex], where [tex]\( x \)[/tex] represents time in hours and [tex]\( y \)[/tex] represents the distance from the town. When [tex]\( x = 0 \)[/tex] (at the starting point), the distance [tex]\( y \)[/tex] for Tasha's balloon is [tex]\( y = 7(0) + 15 = 15 \)[/tex] miles.
Conclusion: Henry's balloon was farther from the town at the beginning.
2. Calculating Speeds:
- For Henry's balloon: After 2 hours, his distance from the town is 37 miles. His initial distance was 25 miles. Thus, the distance traveled in 2 hours = [tex]\( 37 - 25 = 12 \)[/tex] miles. Therefore, Henry's speed = [tex]\( \frac{12 \text{ miles}}{2 \text{ hours}} = 6 \text{ miles per hour} \)[/tex].
- For Tasha's balloon: The distance formula given is [tex]\( y = 7x + 15 \)[/tex]. This indicates Tasha's speed is the coefficient of [tex]\( x \)[/tex], which is 7 miles per hour.
Conclusion: Tasha's balloon traveled more quickly.
3. Decision Making:
Based on our analysis:
- Henry's balloon was farther from the town at the beginning (25 miles vs. 15 miles).
- Tasha's balloon traveled more quickly (7 miles per hour vs. 6 miles per hour).
Hence, the correct answer is:
A. Henry's balloon was farther from the town at the beginning, but Tasha's balloon traveled more quickly.
1. Initial Distances:
- Henry's balloon starts at a distance of 25 miles from the town.
- The initial equation for Tasha's balloon is [tex]\( y = 7x + 15 \)[/tex], where [tex]\( x \)[/tex] represents time in hours and [tex]\( y \)[/tex] represents the distance from the town. When [tex]\( x = 0 \)[/tex] (at the starting point), the distance [tex]\( y \)[/tex] for Tasha's balloon is [tex]\( y = 7(0) + 15 = 15 \)[/tex] miles.
Conclusion: Henry's balloon was farther from the town at the beginning.
2. Calculating Speeds:
- For Henry's balloon: After 2 hours, his distance from the town is 37 miles. His initial distance was 25 miles. Thus, the distance traveled in 2 hours = [tex]\( 37 - 25 = 12 \)[/tex] miles. Therefore, Henry's speed = [tex]\( \frac{12 \text{ miles}}{2 \text{ hours}} = 6 \text{ miles per hour} \)[/tex].
- For Tasha's balloon: The distance formula given is [tex]\( y = 7x + 15 \)[/tex]. This indicates Tasha's speed is the coefficient of [tex]\( x \)[/tex], which is 7 miles per hour.
Conclusion: Tasha's balloon traveled more quickly.
3. Decision Making:
Based on our analysis:
- Henry's balloon was farther from the town at the beginning (25 miles vs. 15 miles).
- Tasha's balloon traveled more quickly (7 miles per hour vs. 6 miles per hour).
Hence, the correct answer is:
A. Henry's balloon was farther from the town at the beginning, but Tasha's balloon traveled more quickly.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.