At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve the problem of finding the length of the edge of a cube given its volume.
### Problem
The volume of a material used to make a cube is 4913 cm³. We need to determine the length of each edge of the cube.
### Step-by-Step Solution
1. Understand the Volume Formula:
The volume [tex]\( V \)[/tex] of a cube can be expressed by the formula:
[tex]\[ V = a^3 \][/tex]
where [tex]\( a \)[/tex] is the length of one edge of the cube.
2. Given Information:
We are given that the volume [tex]\( V \)[/tex] of the cube is 4913 cm³.
3. Set Up the Equation:
Using the volume formula, we set it equal to the given volume:
[tex]\[ a^3 = 4913 \][/tex]
4. Solve for [tex]\( a \)[/tex]:
To find the length of the edge [tex]\( a \)[/tex], we need to take the cube root of 4913:
[tex]\[ a = \sqrt[3]{4913} \][/tex]
5. Calculation of Cube Root:
By calculating the cube root of 4913, we find:
[tex]\[ \sqrt[3]{4913} \approx 17 \][/tex]
### Conclusion
Therefore, the length of each edge of the cube is approximately 17 cm.
### Problem
The volume of a material used to make a cube is 4913 cm³. We need to determine the length of each edge of the cube.
### Step-by-Step Solution
1. Understand the Volume Formula:
The volume [tex]\( V \)[/tex] of a cube can be expressed by the formula:
[tex]\[ V = a^3 \][/tex]
where [tex]\( a \)[/tex] is the length of one edge of the cube.
2. Given Information:
We are given that the volume [tex]\( V \)[/tex] of the cube is 4913 cm³.
3. Set Up the Equation:
Using the volume formula, we set it equal to the given volume:
[tex]\[ a^3 = 4913 \][/tex]
4. Solve for [tex]\( a \)[/tex]:
To find the length of the edge [tex]\( a \)[/tex], we need to take the cube root of 4913:
[tex]\[ a = \sqrt[3]{4913} \][/tex]
5. Calculation of Cube Root:
By calculating the cube root of 4913, we find:
[tex]\[ \sqrt[3]{4913} \approx 17 \][/tex]
### Conclusion
Therefore, the length of each edge of the cube is approximately 17 cm.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.