Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem of finding the length of the edge of a cube given its volume.
### Problem
The volume of a material used to make a cube is 4913 cm³. We need to determine the length of each edge of the cube.
### Step-by-Step Solution
1. Understand the Volume Formula:
The volume [tex]\( V \)[/tex] of a cube can be expressed by the formula:
[tex]\[ V = a^3 \][/tex]
where [tex]\( a \)[/tex] is the length of one edge of the cube.
2. Given Information:
We are given that the volume [tex]\( V \)[/tex] of the cube is 4913 cm³.
3. Set Up the Equation:
Using the volume formula, we set it equal to the given volume:
[tex]\[ a^3 = 4913 \][/tex]
4. Solve for [tex]\( a \)[/tex]:
To find the length of the edge [tex]\( a \)[/tex], we need to take the cube root of 4913:
[tex]\[ a = \sqrt[3]{4913} \][/tex]
5. Calculation of Cube Root:
By calculating the cube root of 4913, we find:
[tex]\[ \sqrt[3]{4913} \approx 17 \][/tex]
### Conclusion
Therefore, the length of each edge of the cube is approximately 17 cm.
### Problem
The volume of a material used to make a cube is 4913 cm³. We need to determine the length of each edge of the cube.
### Step-by-Step Solution
1. Understand the Volume Formula:
The volume [tex]\( V \)[/tex] of a cube can be expressed by the formula:
[tex]\[ V = a^3 \][/tex]
where [tex]\( a \)[/tex] is the length of one edge of the cube.
2. Given Information:
We are given that the volume [tex]\( V \)[/tex] of the cube is 4913 cm³.
3. Set Up the Equation:
Using the volume formula, we set it equal to the given volume:
[tex]\[ a^3 = 4913 \][/tex]
4. Solve for [tex]\( a \)[/tex]:
To find the length of the edge [tex]\( a \)[/tex], we need to take the cube root of 4913:
[tex]\[ a = \sqrt[3]{4913} \][/tex]
5. Calculation of Cube Root:
By calculating the cube root of 4913, we find:
[tex]\[ \sqrt[3]{4913} \approx 17 \][/tex]
### Conclusion
Therefore, the length of each edge of the cube is approximately 17 cm.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.