Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's walk through the detailed step-by-step solutions for the given questions.
### Question 4.3.1
"The line [tex]\( x = 0 \)[/tex] is described by...."
Firstly, we need to understand what the equation [tex]\( x = 0 \)[/tex] represents in a coordinate plane. This equation tells us that for all values of [tex]\( y \)[/tex], [tex]\( x \)[/tex] remains 0. Hence, this describes a vertical line that passes through the origin and upwards/downwards along the y-axis.
Given the options:
a) The x-axis
b) The y-axis
c) Any line through the origin.
Correct Option:
b) The y-axis
So, the line [tex]\( x = 0 \)[/tex] is described by the y-axis.
### Question 4.3.2
"In the relation [tex]\( y = mx + c \)[/tex],"
We need to identify the roles of [tex]\( m \)[/tex] and [tex]\( c \)[/tex] in the linear equation [tex]\( y = mx + c \)[/tex]. Here’s the breakdown:
- [tex]\( y = mx + c \)[/tex] is the slope-intercept form of a linear equation.
- [tex]\( m \)[/tex] represents the slope of the line, which indicates how steep the line is.
- [tex]\( c \)[/tex] represents the y-intercept, which is the point where the line crosses the y-axis.
Given the options:
a) m is the slope and c the x-intercept.
b) m is the slope and c the y-intercept.
c) c is the slope and m the x-intercept.
d) c is the slope and m the y-intercept.
Correct Option:
b) m is the slope and c the y-intercept.
So, in the relation [tex]\( y = mx + c \)[/tex], [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] the y-intercept.
We can now compile the results:
1. 4.3.1 - The line [tex]\( x = 0 \)[/tex] is described by the y-axis, which corresponds to option 2.
2. 4.3.2 - In the relation [tex]\( y = mx + c \)[/tex], [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] the y-intercept, which corresponds to option 2.
Therefore, the answers are:
- For question 4.3.1, the answer is 2.
- For question 4.3.2, the answer is 2.
### Question 4.3.1
"The line [tex]\( x = 0 \)[/tex] is described by...."
Firstly, we need to understand what the equation [tex]\( x = 0 \)[/tex] represents in a coordinate plane. This equation tells us that for all values of [tex]\( y \)[/tex], [tex]\( x \)[/tex] remains 0. Hence, this describes a vertical line that passes through the origin and upwards/downwards along the y-axis.
Given the options:
a) The x-axis
b) The y-axis
c) Any line through the origin.
Correct Option:
b) The y-axis
So, the line [tex]\( x = 0 \)[/tex] is described by the y-axis.
### Question 4.3.2
"In the relation [tex]\( y = mx + c \)[/tex],"
We need to identify the roles of [tex]\( m \)[/tex] and [tex]\( c \)[/tex] in the linear equation [tex]\( y = mx + c \)[/tex]. Here’s the breakdown:
- [tex]\( y = mx + c \)[/tex] is the slope-intercept form of a linear equation.
- [tex]\( m \)[/tex] represents the slope of the line, which indicates how steep the line is.
- [tex]\( c \)[/tex] represents the y-intercept, which is the point where the line crosses the y-axis.
Given the options:
a) m is the slope and c the x-intercept.
b) m is the slope and c the y-intercept.
c) c is the slope and m the x-intercept.
d) c is the slope and m the y-intercept.
Correct Option:
b) m is the slope and c the y-intercept.
So, in the relation [tex]\( y = mx + c \)[/tex], [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] the y-intercept.
We can now compile the results:
1. 4.3.1 - The line [tex]\( x = 0 \)[/tex] is described by the y-axis, which corresponds to option 2.
2. 4.3.2 - In the relation [tex]\( y = mx + c \)[/tex], [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] the y-intercept, which corresponds to option 2.
Therefore, the answers are:
- For question 4.3.1, the answer is 2.
- For question 4.3.2, the answer is 2.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.