Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Calculate the value of [tex]$\log_{66} 32$[/tex].

Sagot :

To solve for [tex]\(\log_{66} 32\)[/tex], we need to determine the power to which the base 66 must be raised to get 32.

In mathematical terms, we are looking for the value [tex]\(x\)[/tex] in the equation:
[tex]\[ 66^x = 32 \][/tex]

Using logarithms, particularly change of base formula, we can express this as:
[tex]\[ \log_{66} 32 = \frac{\log 32}{\log 66} \][/tex]

By evaluating the logs, we determine the required power.

Given the computations:
[tex]\[ \log_{66} 32 \approx 0.8272127695952917 \][/tex]

This tells us that [tex]\(\log_{66} 32\)[/tex] is approximately [tex]\(0.8272\)[/tex] to four decimal places. Thus:

[tex]\[ \log_{66} 32 \approx 0.8272 \][/tex]

This is the detailed solution for finding the logarithm of 32 with base 66.