Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's solve this system of linear equations step by step.
We are given the system of equations:
[tex]\[ \begin{cases} -7x - 2y = 14 \\ 6x + 6y = 18 \end{cases} \][/tex]
### Step 1: Simplify the Equations if Possible
First, we’ll simplify the second equation:
[tex]\[ 6x + 6y = 18 \][/tex]
Divide every term by 6:
[tex]\[ x + y = 3 \quad \text{(Equation 2)} \][/tex]
### Step 2: Use Substitution or Elimination
We can use the substitution method here. Express [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 3 - x \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute into the First Equation
Now, substitute Equation 3 into the first equation:
[tex]\[ -7x - 2(3 - x) = 14 \][/tex]
Simplify this equation:
[tex]\[ -7x - 6 + 2x = 14 \][/tex]
Combine like terms:
[tex]\[ -5x - 6 = 14 \][/tex]
Add 6 to both sides:
[tex]\[ -5x = 20 \][/tex]
Divide both sides by -5:
[tex]\[ x = -4 \][/tex]
### Step 4: Substitute [tex]\(x\)[/tex] Back into Equation 3
Now, substitute [tex]\(x = -4\)[/tex] back into Equation 3:
[tex]\[ y = 3 - (-4) \][/tex]
Simplify:
[tex]\[ y = 3 + 4 \\ y = 7 \][/tex]
### Step 5: Write the Solution
Therefore, the solution to the system of equations is:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
We can now fill in the blanks:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
This means the solution to the system of equations is [tex]\((-4, 7)\)[/tex].
We are given the system of equations:
[tex]\[ \begin{cases} -7x - 2y = 14 \\ 6x + 6y = 18 \end{cases} \][/tex]
### Step 1: Simplify the Equations if Possible
First, we’ll simplify the second equation:
[tex]\[ 6x + 6y = 18 \][/tex]
Divide every term by 6:
[tex]\[ x + y = 3 \quad \text{(Equation 2)} \][/tex]
### Step 2: Use Substitution or Elimination
We can use the substitution method here. Express [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 3 - x \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute into the First Equation
Now, substitute Equation 3 into the first equation:
[tex]\[ -7x - 2(3 - x) = 14 \][/tex]
Simplify this equation:
[tex]\[ -7x - 6 + 2x = 14 \][/tex]
Combine like terms:
[tex]\[ -5x - 6 = 14 \][/tex]
Add 6 to both sides:
[tex]\[ -5x = 20 \][/tex]
Divide both sides by -5:
[tex]\[ x = -4 \][/tex]
### Step 4: Substitute [tex]\(x\)[/tex] Back into Equation 3
Now, substitute [tex]\(x = -4\)[/tex] back into Equation 3:
[tex]\[ y = 3 - (-4) \][/tex]
Simplify:
[tex]\[ y = 3 + 4 \\ y = 7 \][/tex]
### Step 5: Write the Solution
Therefore, the solution to the system of equations is:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
We can now fill in the blanks:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
This means the solution to the system of equations is [tex]\((-4, 7)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.