Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve this system of linear equations step by step.
We are given the system of equations:
[tex]\[ \begin{cases} -7x - 2y = 14 \\ 6x + 6y = 18 \end{cases} \][/tex]
### Step 1: Simplify the Equations if Possible
First, we’ll simplify the second equation:
[tex]\[ 6x + 6y = 18 \][/tex]
Divide every term by 6:
[tex]\[ x + y = 3 \quad \text{(Equation 2)} \][/tex]
### Step 2: Use Substitution or Elimination
We can use the substitution method here. Express [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 3 - x \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute into the First Equation
Now, substitute Equation 3 into the first equation:
[tex]\[ -7x - 2(3 - x) = 14 \][/tex]
Simplify this equation:
[tex]\[ -7x - 6 + 2x = 14 \][/tex]
Combine like terms:
[tex]\[ -5x - 6 = 14 \][/tex]
Add 6 to both sides:
[tex]\[ -5x = 20 \][/tex]
Divide both sides by -5:
[tex]\[ x = -4 \][/tex]
### Step 4: Substitute [tex]\(x\)[/tex] Back into Equation 3
Now, substitute [tex]\(x = -4\)[/tex] back into Equation 3:
[tex]\[ y = 3 - (-4) \][/tex]
Simplify:
[tex]\[ y = 3 + 4 \\ y = 7 \][/tex]
### Step 5: Write the Solution
Therefore, the solution to the system of equations is:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
We can now fill in the blanks:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
This means the solution to the system of equations is [tex]\((-4, 7)\)[/tex].
We are given the system of equations:
[tex]\[ \begin{cases} -7x - 2y = 14 \\ 6x + 6y = 18 \end{cases} \][/tex]
### Step 1: Simplify the Equations if Possible
First, we’ll simplify the second equation:
[tex]\[ 6x + 6y = 18 \][/tex]
Divide every term by 6:
[tex]\[ x + y = 3 \quad \text{(Equation 2)} \][/tex]
### Step 2: Use Substitution or Elimination
We can use the substitution method here. Express [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 3 - x \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute into the First Equation
Now, substitute Equation 3 into the first equation:
[tex]\[ -7x - 2(3 - x) = 14 \][/tex]
Simplify this equation:
[tex]\[ -7x - 6 + 2x = 14 \][/tex]
Combine like terms:
[tex]\[ -5x - 6 = 14 \][/tex]
Add 6 to both sides:
[tex]\[ -5x = 20 \][/tex]
Divide both sides by -5:
[tex]\[ x = -4 \][/tex]
### Step 4: Substitute [tex]\(x\)[/tex] Back into Equation 3
Now, substitute [tex]\(x = -4\)[/tex] back into Equation 3:
[tex]\[ y = 3 - (-4) \][/tex]
Simplify:
[tex]\[ y = 3 + 4 \\ y = 7 \][/tex]
### Step 5: Write the Solution
Therefore, the solution to the system of equations is:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
We can now fill in the blanks:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
This means the solution to the system of equations is [tex]\((-4, 7)\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.