Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the number of molecules in 11.2 liters of gas at Standard Temperature and Pressure (STP), we can follow these steps:
1. Understand the Concept of Molar Volume at STP:
- At STP (Standard Temperature and Pressure), one mole of any ideal gas occupies a volume of 22.4 liters.
2. Determine the Number of Moles:
- To find the number of moles in a given volume of gas, we use the molar volume. The number of moles can be calculated using the formula:
[tex]\[ \text{Number of Moles} = \frac{\text{Volume of Gas}}{\text{Molar Volume}} \][/tex]
- For our problem, the volume of gas is 11.2 liters, and the molar volume at STP is 22.4 liters per mole.
[tex]\[ \text{Number of Moles} = \frac{11.2 \, \text{liters}}{22.4 \, \text{liters/mole}} = 0.5 \, \text{moles} \][/tex]
3. Determine the Number of Molecules:
- Avogadro's number ([tex]\(6.022 \times 10^{23}\)[/tex]) gives the number of molecules in one mole of a substance.
- To find the total number of molecules, we multiply the number of moles by Avogadro's number.
[tex]\[ \text{Number of Molecules} = \text{Number of Moles} \times \text{Avogadro's Number} \][/tex]
- Substituting the values:
[tex]\[ \text{Number of Molecules} = 0.5 \, \text{moles} \times 6.022 \times 10^{23} \, \text{molecules/mole} = 3.011 \times 10^{23} \, \text{molecules} \][/tex]
Thus, the number of molecules in 11.2 liters of gas at STP is [tex]\(3.011 \times 10^{23}\)[/tex].
Hence, the correct answer is:
(A) [tex]\(3.01 \times 10^{23}\)[/tex]
1. Understand the Concept of Molar Volume at STP:
- At STP (Standard Temperature and Pressure), one mole of any ideal gas occupies a volume of 22.4 liters.
2. Determine the Number of Moles:
- To find the number of moles in a given volume of gas, we use the molar volume. The number of moles can be calculated using the formula:
[tex]\[ \text{Number of Moles} = \frac{\text{Volume of Gas}}{\text{Molar Volume}} \][/tex]
- For our problem, the volume of gas is 11.2 liters, and the molar volume at STP is 22.4 liters per mole.
[tex]\[ \text{Number of Moles} = \frac{11.2 \, \text{liters}}{22.4 \, \text{liters/mole}} = 0.5 \, \text{moles} \][/tex]
3. Determine the Number of Molecules:
- Avogadro's number ([tex]\(6.022 \times 10^{23}\)[/tex]) gives the number of molecules in one mole of a substance.
- To find the total number of molecules, we multiply the number of moles by Avogadro's number.
[tex]\[ \text{Number of Molecules} = \text{Number of Moles} \times \text{Avogadro's Number} \][/tex]
- Substituting the values:
[tex]\[ \text{Number of Molecules} = 0.5 \, \text{moles} \times 6.022 \times 10^{23} \, \text{molecules/mole} = 3.011 \times 10^{23} \, \text{molecules} \][/tex]
Thus, the number of molecules in 11.2 liters of gas at STP is [tex]\(3.011 \times 10^{23}\)[/tex].
Hence, the correct answer is:
(A) [tex]\(3.01 \times 10^{23}\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.