Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To rationalize the denominator of [tex]\(\frac{26}{4 + \sqrt{3}}\)[/tex], we need to eliminate the square root from the denominator. To achieve this, we'll multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(4 + \sqrt{3}\)[/tex] is [tex]\(4 - \sqrt{3}\)[/tex]. Here are the steps:
1. Multiply by the conjugate:
[tex]\[ \frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}} \][/tex]
2. Numerator multiplication:
- Expand the numerator:
[tex]\[ 26 \times (4 - \sqrt{3}) = 26 \times 4 - 26 \times \sqrt{3} = 104 - 26\sqrt{3} \][/tex]
3. Denominator multiplication:
- Use the difference of squares formula [tex]\( (a + b)(a - b) = a^2 - b^2\)[/tex]:
[tex]\[ (4 + \sqrt{3})(4 - \sqrt{3}) = 4^2 - (\sqrt{3})^2 = 16 - 3 = 13 \][/tex]
4. Rewrite the fraction:
[tex]\[ \frac{104 - 26\sqrt{3}}{13} \][/tex]
5. Simplify the fraction:
- Divide each term in the numerator by the denominator:
[tex]\[ \frac{104}{13} - \frac{26\sqrt{3}}{13} = 8 - 2\sqrt{3} \][/tex]
Thus, the rationalized form of [tex]\(\frac{26}{4 + \sqrt{3}}\)[/tex] is:
[tex]\[ 8 - 2\sqrt{3} \][/tex]
1. Multiply by the conjugate:
[tex]\[ \frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}} \][/tex]
2. Numerator multiplication:
- Expand the numerator:
[tex]\[ 26 \times (4 - \sqrt{3}) = 26 \times 4 - 26 \times \sqrt{3} = 104 - 26\sqrt{3} \][/tex]
3. Denominator multiplication:
- Use the difference of squares formula [tex]\( (a + b)(a - b) = a^2 - b^2\)[/tex]:
[tex]\[ (4 + \sqrt{3})(4 - \sqrt{3}) = 4^2 - (\sqrt{3})^2 = 16 - 3 = 13 \][/tex]
4. Rewrite the fraction:
[tex]\[ \frac{104 - 26\sqrt{3}}{13} \][/tex]
5. Simplify the fraction:
- Divide each term in the numerator by the denominator:
[tex]\[ \frac{104}{13} - \frac{26\sqrt{3}}{13} = 8 - 2\sqrt{3} \][/tex]
Thus, the rationalized form of [tex]\(\frac{26}{4 + \sqrt{3}}\)[/tex] is:
[tex]\[ 8 - 2\sqrt{3} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.