Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To rationalize the denominator of [tex]\(\frac{26}{4 + \sqrt{3}}\)[/tex], we need to eliminate the square root from the denominator. To achieve this, we'll multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(4 + \sqrt{3}\)[/tex] is [tex]\(4 - \sqrt{3}\)[/tex]. Here are the steps:
1. Multiply by the conjugate:
[tex]\[ \frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}} \][/tex]
2. Numerator multiplication:
- Expand the numerator:
[tex]\[ 26 \times (4 - \sqrt{3}) = 26 \times 4 - 26 \times \sqrt{3} = 104 - 26\sqrt{3} \][/tex]
3. Denominator multiplication:
- Use the difference of squares formula [tex]\( (a + b)(a - b) = a^2 - b^2\)[/tex]:
[tex]\[ (4 + \sqrt{3})(4 - \sqrt{3}) = 4^2 - (\sqrt{3})^2 = 16 - 3 = 13 \][/tex]
4. Rewrite the fraction:
[tex]\[ \frac{104 - 26\sqrt{3}}{13} \][/tex]
5. Simplify the fraction:
- Divide each term in the numerator by the denominator:
[tex]\[ \frac{104}{13} - \frac{26\sqrt{3}}{13} = 8 - 2\sqrt{3} \][/tex]
Thus, the rationalized form of [tex]\(\frac{26}{4 + \sqrt{3}}\)[/tex] is:
[tex]\[ 8 - 2\sqrt{3} \][/tex]
1. Multiply by the conjugate:
[tex]\[ \frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}} \][/tex]
2. Numerator multiplication:
- Expand the numerator:
[tex]\[ 26 \times (4 - \sqrt{3}) = 26 \times 4 - 26 \times \sqrt{3} = 104 - 26\sqrt{3} \][/tex]
3. Denominator multiplication:
- Use the difference of squares formula [tex]\( (a + b)(a - b) = a^2 - b^2\)[/tex]:
[tex]\[ (4 + \sqrt{3})(4 - \sqrt{3}) = 4^2 - (\sqrt{3})^2 = 16 - 3 = 13 \][/tex]
4. Rewrite the fraction:
[tex]\[ \frac{104 - 26\sqrt{3}}{13} \][/tex]
5. Simplify the fraction:
- Divide each term in the numerator by the denominator:
[tex]\[ \frac{104}{13} - \frac{26\sqrt{3}}{13} = 8 - 2\sqrt{3} \][/tex]
Thus, the rationalized form of [tex]\(\frac{26}{4 + \sqrt{3}}\)[/tex] is:
[tex]\[ 8 - 2\sqrt{3} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.