Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the expression [tex]\(4a^2 + 4a - 3\)[/tex] through factoring, we need to find two binomial expressions such that their product gives the original quadratic expression.
The general form for factoring a quadratic [tex]\(ax^2 + bx + c\)[/tex] is given by:
[tex]\[ (ax + p)(qx + r) \][/tex]
Such that when expanded:
[tex]\[ (ax + p)(qx + r) = aqx^2 + (ap + r) x + pr \][/tex]
For our quadratic expression [tex]\(4a^2 + 4a - 3\)[/tex]:
- The coefficient of [tex]\(a^2\)[/tex] is 4.
- The coefficient of [tex]\(a\)[/tex] is 4.
- The constant term is -3.
We need to find pairs [tex]\((p, r)\)[/tex] such that:
1. The product of coefficients of [tex]\(a^2\)[/tex] and the constant term remain the same when multiplied: [tex]\(4 \times -3 = -12\)[/tex].
2. The middle term [tex]\(4a\)[/tex] can be broken down accordingly.
We need factors of -12 that add up to the middle coefficient 4. Possible pairs that multiply to -12 are:
- (1, -12)
- (-1, 12)
- (2, -6)
- (-2, 6)
- (3, -4)
- (-3, 4)
From these, we try:
[tex]\[ (ax + p)(qx + r) = 4a^2 + (ap + qr)a + 4a - 3 \][/tex]
Searching these pairs reveals:
Consider, -2, 6:
[tex]\[ (4a - 2)(a + 1.5) = 4a^2 + 6a – 3 (not correct) \][/tex]
No clear set reveals apparent solution manually so:
Using factorization by grouping we identify:
First principle (AC method)
4a^2 + 4a - 3 = 4a^2 - 2a + 6a - 3 step proceed and break middle terms:
Factor out common terms:
= 2a (2a - 1) + 3 (2a - 1)
= (2a + 3) (2a - 1)
So, we conclude:
[tex]\[ 4a^2 + 4a -3 = (4a+6)(2a)-1 when considered 2a for middle terms upto reveal in quadratic step which accurate till clear sqrt in pairing. Thus most likely here : \(4a^2 + 4a-3 = (2a - 1)(2a + 3)\) So, the possible factorizations of \(4a^2 + 4a - 3\) include: \[(2a - 1)(2a + 3)\][/tex]
The general form for factoring a quadratic [tex]\(ax^2 + bx + c\)[/tex] is given by:
[tex]\[ (ax + p)(qx + r) \][/tex]
Such that when expanded:
[tex]\[ (ax + p)(qx + r) = aqx^2 + (ap + r) x + pr \][/tex]
For our quadratic expression [tex]\(4a^2 + 4a - 3\)[/tex]:
- The coefficient of [tex]\(a^2\)[/tex] is 4.
- The coefficient of [tex]\(a\)[/tex] is 4.
- The constant term is -3.
We need to find pairs [tex]\((p, r)\)[/tex] such that:
1. The product of coefficients of [tex]\(a^2\)[/tex] and the constant term remain the same when multiplied: [tex]\(4 \times -3 = -12\)[/tex].
2. The middle term [tex]\(4a\)[/tex] can be broken down accordingly.
We need factors of -12 that add up to the middle coefficient 4. Possible pairs that multiply to -12 are:
- (1, -12)
- (-1, 12)
- (2, -6)
- (-2, 6)
- (3, -4)
- (-3, 4)
From these, we try:
[tex]\[ (ax + p)(qx + r) = 4a^2 + (ap + qr)a + 4a - 3 \][/tex]
Searching these pairs reveals:
Consider, -2, 6:
[tex]\[ (4a - 2)(a + 1.5) = 4a^2 + 6a – 3 (not correct) \][/tex]
No clear set reveals apparent solution manually so:
Using factorization by grouping we identify:
First principle (AC method)
4a^2 + 4a - 3 = 4a^2 - 2a + 6a - 3 step proceed and break middle terms:
Factor out common terms:
= 2a (2a - 1) + 3 (2a - 1)
= (2a + 3) (2a - 1)
So, we conclude:
[tex]\[ 4a^2 + 4a -3 = (4a+6)(2a)-1 when considered 2a for middle terms upto reveal in quadratic step which accurate till clear sqrt in pairing. Thus most likely here : \(4a^2 + 4a-3 = (2a - 1)(2a + 3)\) So, the possible factorizations of \(4a^2 + 4a - 3\) include: \[(2a - 1)(2a + 3)\][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.