Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the expression [tex]\(4a^2 + 4a - 3\)[/tex] through factoring, we need to find two binomial expressions such that their product gives the original quadratic expression.
The general form for factoring a quadratic [tex]\(ax^2 + bx + c\)[/tex] is given by:
[tex]\[ (ax + p)(qx + r) \][/tex]
Such that when expanded:
[tex]\[ (ax + p)(qx + r) = aqx^2 + (ap + r) x + pr \][/tex]
For our quadratic expression [tex]\(4a^2 + 4a - 3\)[/tex]:
- The coefficient of [tex]\(a^2\)[/tex] is 4.
- The coefficient of [tex]\(a\)[/tex] is 4.
- The constant term is -3.
We need to find pairs [tex]\((p, r)\)[/tex] such that:
1. The product of coefficients of [tex]\(a^2\)[/tex] and the constant term remain the same when multiplied: [tex]\(4 \times -3 = -12\)[/tex].
2. The middle term [tex]\(4a\)[/tex] can be broken down accordingly.
We need factors of -12 that add up to the middle coefficient 4. Possible pairs that multiply to -12 are:
- (1, -12)
- (-1, 12)
- (2, -6)
- (-2, 6)
- (3, -4)
- (-3, 4)
From these, we try:
[tex]\[ (ax + p)(qx + r) = 4a^2 + (ap + qr)a + 4a - 3 \][/tex]
Searching these pairs reveals:
Consider, -2, 6:
[tex]\[ (4a - 2)(a + 1.5) = 4a^2 + 6a – 3 (not correct) \][/tex]
No clear set reveals apparent solution manually so:
Using factorization by grouping we identify:
First principle (AC method)
4a^2 + 4a - 3 = 4a^2 - 2a + 6a - 3 step proceed and break middle terms:
Factor out common terms:
= 2a (2a - 1) + 3 (2a - 1)
= (2a + 3) (2a - 1)
So, we conclude:
[tex]\[ 4a^2 + 4a -3 = (4a+6)(2a)-1 when considered 2a for middle terms upto reveal in quadratic step which accurate till clear sqrt in pairing. Thus most likely here : \(4a^2 + 4a-3 = (2a - 1)(2a + 3)\) So, the possible factorizations of \(4a^2 + 4a - 3\) include: \[(2a - 1)(2a + 3)\][/tex]
The general form for factoring a quadratic [tex]\(ax^2 + bx + c\)[/tex] is given by:
[tex]\[ (ax + p)(qx + r) \][/tex]
Such that when expanded:
[tex]\[ (ax + p)(qx + r) = aqx^2 + (ap + r) x + pr \][/tex]
For our quadratic expression [tex]\(4a^2 + 4a - 3\)[/tex]:
- The coefficient of [tex]\(a^2\)[/tex] is 4.
- The coefficient of [tex]\(a\)[/tex] is 4.
- The constant term is -3.
We need to find pairs [tex]\((p, r)\)[/tex] such that:
1. The product of coefficients of [tex]\(a^2\)[/tex] and the constant term remain the same when multiplied: [tex]\(4 \times -3 = -12\)[/tex].
2. The middle term [tex]\(4a\)[/tex] can be broken down accordingly.
We need factors of -12 that add up to the middle coefficient 4. Possible pairs that multiply to -12 are:
- (1, -12)
- (-1, 12)
- (2, -6)
- (-2, 6)
- (3, -4)
- (-3, 4)
From these, we try:
[tex]\[ (ax + p)(qx + r) = 4a^2 + (ap + qr)a + 4a - 3 \][/tex]
Searching these pairs reveals:
Consider, -2, 6:
[tex]\[ (4a - 2)(a + 1.5) = 4a^2 + 6a – 3 (not correct) \][/tex]
No clear set reveals apparent solution manually so:
Using factorization by grouping we identify:
First principle (AC method)
4a^2 + 4a - 3 = 4a^2 - 2a + 6a - 3 step proceed and break middle terms:
Factor out common terms:
= 2a (2a - 1) + 3 (2a - 1)
= (2a + 3) (2a - 1)
So, we conclude:
[tex]\[ 4a^2 + 4a -3 = (4a+6)(2a)-1 when considered 2a for middle terms upto reveal in quadratic step which accurate till clear sqrt in pairing. Thus most likely here : \(4a^2 + 4a-3 = (2a - 1)(2a + 3)\) So, the possible factorizations of \(4a^2 + 4a - 3\) include: \[(2a - 1)(2a + 3)\][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.