Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to use Gay-Lussac's Law, which states that the pressure of a gas is directly proportional to its absolute temperature, assuming constant volume. The mathematical representation of Gay-Lussac's Law is:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( T_1 \)[/tex] is the initial temperature,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( T_2 \)[/tex] is the final temperature.
We need to perform the following steps:
1. Convert the temperatures from Celsius to Kelvin:
[tex]\[ T(\text{Kelvin}) = T(\text{Celsius}) + 273.15 \][/tex]
2. Set up the equation using the given values:
- [tex]\( P_1 = 380 \)[/tex] mmHg
- [tex]\( T_1 = 127^\circ\text{C} + 273.15 = 400.15 \)[/tex] K
- [tex]\( T_2 = 27^\circ\text{C} + 273.15 = 300.15 \)[/tex] K
3. Solve for the final pressure [tex]\( P_2 \)[/tex]:
[tex]\[ \frac{P_2}{T_2} = \frac{P_1}{T_1} \][/tex]
Rearranging for [tex]\( P_2 \)[/tex] gives:
[tex]\[ P_2 = P_1 \cdot \frac{T_2}{T_1} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ P_2 = 380 \, \text{mmHg} \cdot \frac{300.15 \, \text{K}}{400.15 \, \text{K}} \][/tex]
5. Compute the final pressure:
[tex]\[ P_2 \approx 285.04 \, \text{mmHg} \][/tex]
Therefore, the pressure of the methane gas when it is cooled to 27°C will be approximately 285 mmHg.
The correct answer is:
B. 285 mmHg
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( T_1 \)[/tex] is the initial temperature,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( T_2 \)[/tex] is the final temperature.
We need to perform the following steps:
1. Convert the temperatures from Celsius to Kelvin:
[tex]\[ T(\text{Kelvin}) = T(\text{Celsius}) + 273.15 \][/tex]
2. Set up the equation using the given values:
- [tex]\( P_1 = 380 \)[/tex] mmHg
- [tex]\( T_1 = 127^\circ\text{C} + 273.15 = 400.15 \)[/tex] K
- [tex]\( T_2 = 27^\circ\text{C} + 273.15 = 300.15 \)[/tex] K
3. Solve for the final pressure [tex]\( P_2 \)[/tex]:
[tex]\[ \frac{P_2}{T_2} = \frac{P_1}{T_1} \][/tex]
Rearranging for [tex]\( P_2 \)[/tex] gives:
[tex]\[ P_2 = P_1 \cdot \frac{T_2}{T_1} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ P_2 = 380 \, \text{mmHg} \cdot \frac{300.15 \, \text{K}}{400.15 \, \text{K}} \][/tex]
5. Compute the final pressure:
[tex]\[ P_2 \approx 285.04 \, \text{mmHg} \][/tex]
Therefore, the pressure of the methane gas when it is cooled to 27°C will be approximately 285 mmHg.
The correct answer is:
B. 285 mmHg
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.