Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Select the correct answer.

Which expression is equivalent to the given expression?
[tex]\[ \frac{6 a b}{\left(a^0 b^2\right)^4} \][/tex]

A. [tex]\(\frac{6 a}{b^7}\)[/tex]

B. [tex]\(\frac{6 a}{b^5}\)[/tex]

C. [tex]\(\frac{6}{a^3 b^5}\)[/tex]

D. [tex]\(\frac{6}{a^3 b^7}\)[/tex]


Sagot :

Let's simplify the given expression step-by-step:

Given expression:
[tex]\[ \frac{6ab}{\left(a^0 b^2\right)^4} \][/tex]

Step 1: Simplify the denominator.
[tex]\[ \left(a^0 b^2\right)^4 \][/tex]
We use the properties of exponents here. Recall that any number raised to the power of 0 is 1, so [tex]\(a^0 = 1\)[/tex]. Hence,
[tex]\[ \left(a^0 b^2\right)^4 = \left(1 \cdot b^2\right)^4 = (b^2)^4 \][/tex]
Using the power of a power rule, [tex]\((b^2)^4 = b^{2 \cdot 4} = b^8\)[/tex].

Hence, our denominator simplifies to:
[tex]\[ b^8 \][/tex]

Step 2: Simplify the fraction.
We now have:
[tex]\[ \frac{6ab}{b^8} \][/tex]
We can simplify this by subtracting the exponents of [tex]\(b\)[/tex] in the numerator and the denominator. Since there is a [tex]\(b\)[/tex] (which is [tex]\(b^1\)[/tex]) in the numerator, we have:
[tex]\[ b^8 = b^{8-1} = b^7 \][/tex]
So our expression becomes:
[tex]\[ \frac{6a}{b^7} \][/tex]

Thus, the expression equivalent to the given one is:
[tex]\[ \frac{6a}{b^7} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]