Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find an equivalent equation to [tex]\( x^2 - 6x = 8 \)[/tex], we will complete the square. Here is a step-by-step solution for this process:
1. Start with the given equation:
[tex]\[ x^2 - 6x = 8 \][/tex]
2. Complete the square on the left-hand side of the equation:
- Move the constant term (8) to the other side temporarily:
[tex]\[ x^2 - 6x - 8 = 0 \][/tex]
- Focus on the quadratic and linear terms ([tex]\( x^2 - 6x \)[/tex]). We need to express it as a perfect square trinomial.
3. To complete the square for [tex]\( x^2 - 6x \)[/tex]:
- Take the coefficient of [tex]\( x \)[/tex], which is [tex]\(-6\)[/tex], divide it by 2, and then square it:
[tex]\[ \left(-\frac{6}{2}\right)^2 = (-3)^2 = 9 \][/tex]
- Add and subtract this squared number inside the equation. This doesn't change the equation because we are adding 9 and subtracting 9 (adding zero in effect):
[tex]\[ x^2 - 6x + 9 - 9 = 8 \][/tex]
- The equation is now:
[tex]\[ (x - 3)^2 - 9 = 8 \][/tex]
4. Simplify the equation by moving the constant term (9) to the other side:
[tex]\[ (x - 3)^2 - 9 = 8 \][/tex]
[tex]\[ (x - 3)^2 = 8 + 9 \][/tex]
[tex]\[ (x - 3)^2 = 17 \][/tex]
Therefore, the correct equivalent equation is
[tex]\[ (x - 3)^2 = 17. \][/tex]
The answer is:
D. [tex]\((x - 3)^2 = 17\)[/tex]
1. Start with the given equation:
[tex]\[ x^2 - 6x = 8 \][/tex]
2. Complete the square on the left-hand side of the equation:
- Move the constant term (8) to the other side temporarily:
[tex]\[ x^2 - 6x - 8 = 0 \][/tex]
- Focus on the quadratic and linear terms ([tex]\( x^2 - 6x \)[/tex]). We need to express it as a perfect square trinomial.
3. To complete the square for [tex]\( x^2 - 6x \)[/tex]:
- Take the coefficient of [tex]\( x \)[/tex], which is [tex]\(-6\)[/tex], divide it by 2, and then square it:
[tex]\[ \left(-\frac{6}{2}\right)^2 = (-3)^2 = 9 \][/tex]
- Add and subtract this squared number inside the equation. This doesn't change the equation because we are adding 9 and subtracting 9 (adding zero in effect):
[tex]\[ x^2 - 6x + 9 - 9 = 8 \][/tex]
- The equation is now:
[tex]\[ (x - 3)^2 - 9 = 8 \][/tex]
4. Simplify the equation by moving the constant term (9) to the other side:
[tex]\[ (x - 3)^2 - 9 = 8 \][/tex]
[tex]\[ (x - 3)^2 = 8 + 9 \][/tex]
[tex]\[ (x - 3)^2 = 17 \][/tex]
Therefore, the correct equivalent equation is
[tex]\[ (x - 3)^2 = 17. \][/tex]
The answer is:
D. [tex]\((x - 3)^2 = 17\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.