Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the equation step-by-step.
The given equation is:
[tex]\[ -12x - 2(x + 9) = 5(x + 4) \][/tex]
First, let's simplify each side of the equation.
Distribute the [tex]\(-2\)[/tex] on the left-hand side:
[tex]\[ -12x - 2(x + 9) = -12x - 2x - 18 \][/tex]
Combine like terms on the left-hand side:
[tex]\[ -12x - 2x - 18 = -14x - 18 \][/tex]
Next, distribute the [tex]\(5\)[/tex] on the right-hand side:
[tex]\[ 5(x + 4) = 5x + 20 \][/tex]
Our equation now looks like this:
[tex]\[ -14x - 18 = 5x + 20 \][/tex]
To isolate [tex]\(x\)[/tex], we need to get all [tex]\(x\)[/tex]-terms on one side and constant terms on the other side. Start by adding [tex]\(14x\)[/tex] to both sides:
[tex]\[ -14x + 14x - 18 = 5x + 14x + 20 \][/tex]
[tex]\[ -18 = 19x + 20 \][/tex]
Now, subtract [tex]\(20\)[/tex] from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ -18 - 20 = 19x + 20 - 20 \][/tex]
[tex]\[ -38 = 19x \][/tex]
Finally, solve for [tex]\(x\)[/tex] by dividing both sides by [tex]\(19\)[/tex]:
[tex]\[ x = \frac{-38}{19} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] that makes the equation true is [tex]\(\boxed{-2}\)[/tex].
So the correct answer is:
A. -2
The given equation is:
[tex]\[ -12x - 2(x + 9) = 5(x + 4) \][/tex]
First, let's simplify each side of the equation.
Distribute the [tex]\(-2\)[/tex] on the left-hand side:
[tex]\[ -12x - 2(x + 9) = -12x - 2x - 18 \][/tex]
Combine like terms on the left-hand side:
[tex]\[ -12x - 2x - 18 = -14x - 18 \][/tex]
Next, distribute the [tex]\(5\)[/tex] on the right-hand side:
[tex]\[ 5(x + 4) = 5x + 20 \][/tex]
Our equation now looks like this:
[tex]\[ -14x - 18 = 5x + 20 \][/tex]
To isolate [tex]\(x\)[/tex], we need to get all [tex]\(x\)[/tex]-terms on one side and constant terms on the other side. Start by adding [tex]\(14x\)[/tex] to both sides:
[tex]\[ -14x + 14x - 18 = 5x + 14x + 20 \][/tex]
[tex]\[ -18 = 19x + 20 \][/tex]
Now, subtract [tex]\(20\)[/tex] from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ -18 - 20 = 19x + 20 - 20 \][/tex]
[tex]\[ -38 = 19x \][/tex]
Finally, solve for [tex]\(x\)[/tex] by dividing both sides by [tex]\(19\)[/tex]:
[tex]\[ x = \frac{-38}{19} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] that makes the equation true is [tex]\(\boxed{-2}\)[/tex].
So the correct answer is:
A. -2
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.