Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct inequality that represents the situation described:
1. Define Variables:
- Let [tex]\( x \)[/tex] represent the width of the photo (in inches).
2. Width of Cake:
- The width of the cake is 4 inches more than the width of the photo. Therefore, the width of the cake is [tex]\( x + 4 \)[/tex].
3. Length of Cake:
- The length of the cake is two times its width. Thus, the length of the cake is [tex]\( 2(x + 4) \)[/tex].
4. Calculate Area of Cake:
- The area of a rectangle is given by the formula: Area = Length × Width.
- Substituting the expressions for the length and width of the cake, we get:
[tex]\[ \text{Area}_\text{cake} = (x + 4) \times 2(x + 4) \][/tex]
5. Simplify the Expression:
- First, expand the expression:
[tex]\[ \text{Area}_\text{cake} = (x + 4)(2x + 8) \][/tex]
6. Set Up the Inequality:
- We are given that the area of the cake is at least 254 square inches. Therefore, we set up the inequality:
[tex]\[ (x + 4)(2x + 8) \geq 254 \][/tex]
The inequality [tex]\( (x + 4)(2x + 8) \geq 254 \)[/tex] matches option C.
Thus, the correct answer is:
C. [tex]\( 2x^2 + 16x + 32 \geq 254 \)[/tex]
1. Define Variables:
- Let [tex]\( x \)[/tex] represent the width of the photo (in inches).
2. Width of Cake:
- The width of the cake is 4 inches more than the width of the photo. Therefore, the width of the cake is [tex]\( x + 4 \)[/tex].
3. Length of Cake:
- The length of the cake is two times its width. Thus, the length of the cake is [tex]\( 2(x + 4) \)[/tex].
4. Calculate Area of Cake:
- The area of a rectangle is given by the formula: Area = Length × Width.
- Substituting the expressions for the length and width of the cake, we get:
[tex]\[ \text{Area}_\text{cake} = (x + 4) \times 2(x + 4) \][/tex]
5. Simplify the Expression:
- First, expand the expression:
[tex]\[ \text{Area}_\text{cake} = (x + 4)(2x + 8) \][/tex]
6. Set Up the Inequality:
- We are given that the area of the cake is at least 254 square inches. Therefore, we set up the inequality:
[tex]\[ (x + 4)(2x + 8) \geq 254 \][/tex]
The inequality [tex]\( (x + 4)(2x + 8) \geq 254 \)[/tex] matches option C.
Thus, the correct answer is:
C. [tex]\( 2x^2 + 16x + 32 \geq 254 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.