Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To analyze the end behavior of the function [tex]\( h(x) = 2(x-3)^2 \)[/tex], we observe what happens as [tex]\( x \)[/tex] approaches both negative infinity and positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
- The term [tex]\( (x-3)^2 \)[/tex] grows very large because squaring any large negative or positive number results in a large positive number.
- Therefore, [tex]\( (x-3)^2 \)[/tex] will tend to positive infinity.
- Multiplying this term by 2 results in a value that also approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
- Similar to the first case, [tex]\( (x-3)^2 \)[/tex] will again grow very large as [tex]\( x \)[/tex] moves towards positive infinity.
- This term will tend to positive infinity as well.
- Multiplying it by 2 still results in a value that approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
So, placing these correctly into the drop-down menu selections:
1. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
- The term [tex]\( (x-3)^2 \)[/tex] grows very large because squaring any large negative or positive number results in a large positive number.
- Therefore, [tex]\( (x-3)^2 \)[/tex] will tend to positive infinity.
- Multiplying this term by 2 results in a value that also approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
- Similar to the first case, [tex]\( (x-3)^2 \)[/tex] will again grow very large as [tex]\( x \)[/tex] moves towards positive infinity.
- This term will tend to positive infinity as well.
- Multiplying it by 2 still results in a value that approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
So, placing these correctly into the drop-down menu selections:
1. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.