Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To analyze the end behavior of the function [tex]\( h(x) = 2(x-3)^2 \)[/tex], we observe what happens as [tex]\( x \)[/tex] approaches both negative infinity and positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
- The term [tex]\( (x-3)^2 \)[/tex] grows very large because squaring any large negative or positive number results in a large positive number.
- Therefore, [tex]\( (x-3)^2 \)[/tex] will tend to positive infinity.
- Multiplying this term by 2 results in a value that also approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
- Similar to the first case, [tex]\( (x-3)^2 \)[/tex] will again grow very large as [tex]\( x \)[/tex] moves towards positive infinity.
- This term will tend to positive infinity as well.
- Multiplying it by 2 still results in a value that approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
So, placing these correctly into the drop-down menu selections:
1. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
- The term [tex]\( (x-3)^2 \)[/tex] grows very large because squaring any large negative or positive number results in a large positive number.
- Therefore, [tex]\( (x-3)^2 \)[/tex] will tend to positive infinity.
- Multiplying this term by 2 results in a value that also approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
- Similar to the first case, [tex]\( (x-3)^2 \)[/tex] will again grow very large as [tex]\( x \)[/tex] moves towards positive infinity.
- This term will tend to positive infinity as well.
- Multiplying it by 2 still results in a value that approaches positive infinity.
- Hence, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
So, placing these correctly into the drop-down menu selections:
1. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( h(x) \)[/tex] approaches positive infinity.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.