Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the truth about the equation [tex]\( y = 2^x + 4 \)[/tex], let's analyze it step-by-step.
1. Understanding the equation:
- The given equation is [tex]\( y = 2^x + 4 \)[/tex].
- This is an exponential equation where the base of the exponent is 2 and a constant term 4 is added.
2. Definition of a Function:
- A function is a special type of relation where every input (or [tex]\( x \)[/tex]-value) has exactly one output (or [tex]\( y \)[/tex]-value).
3. Testing for Functionality:
- To test if [tex]\( y = 2^x + 4 \)[/tex] is a function, for every [tex]\( x \)[/tex] value, determine if it produces a single [tex]\( y \)[/tex] value.
- For any real number [tex]\( x \)[/tex], when plugged into the equation, there is exactly one resultant [tex]\( y \)[/tex] value, since [tex]\(\ 2^x \)[/tex] for any real number [tex]\( x \)[/tex] produces a unique value. Therefore, [tex]\( 2^x + 4 \)[/tex] will also be unique for each [tex]\( x \)[/tex].
4. Definition of a Relation:
- A relation is simply a set of ordered pairs [tex]\(( x, y )\)[/tex].
5. Testing as a Relation:
- [tex]\( y = 2^x + 4 \)[/tex] can be represented as a set of ordered pairs [tex]\(( x, 2^x + 4 )\)[/tex].
- Therefore, it satisfies the definition of a relation as well.
So, [tex]\( y = 2^x + 4 \)[/tex] is both a function and a relation because it meets the criteria for both definitions.
Hence, the correct answer is:
D. It represents both a relation and a function.
1. Understanding the equation:
- The given equation is [tex]\( y = 2^x + 4 \)[/tex].
- This is an exponential equation where the base of the exponent is 2 and a constant term 4 is added.
2. Definition of a Function:
- A function is a special type of relation where every input (or [tex]\( x \)[/tex]-value) has exactly one output (or [tex]\( y \)[/tex]-value).
3. Testing for Functionality:
- To test if [tex]\( y = 2^x + 4 \)[/tex] is a function, for every [tex]\( x \)[/tex] value, determine if it produces a single [tex]\( y \)[/tex] value.
- For any real number [tex]\( x \)[/tex], when plugged into the equation, there is exactly one resultant [tex]\( y \)[/tex] value, since [tex]\(\ 2^x \)[/tex] for any real number [tex]\( x \)[/tex] produces a unique value. Therefore, [tex]\( 2^x + 4 \)[/tex] will also be unique for each [tex]\( x \)[/tex].
4. Definition of a Relation:
- A relation is simply a set of ordered pairs [tex]\(( x, y )\)[/tex].
5. Testing as a Relation:
- [tex]\( y = 2^x + 4 \)[/tex] can be represented as a set of ordered pairs [tex]\(( x, 2^x + 4 )\)[/tex].
- Therefore, it satisfies the definition of a relation as well.
So, [tex]\( y = 2^x + 4 \)[/tex] is both a function and a relation because it meets the criteria for both definitions.
Hence, the correct answer is:
D. It represents both a relation and a function.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.