Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Factor the expression [tex]$x^2 + 4x - 12$[/tex].

Enter the correct answer in the box.


Sagot :

To factor the expression [tex]\( x^2 + 4x - 12 \)[/tex], follow these steps:

1. Identify the quadratic expression:
The given quadratic expression is [tex]\( x^2 + 4x - 12 \)[/tex].

2. Set up the factoring form:
We want to express [tex]\(x^2 + 4x - 12\)[/tex] as a product of two binomials: [tex]\((x - a)(x + b)\)[/tex].

3. Find two numbers that multiply to the constant term and add to the coefficient of the linear term:
We need two numbers that multiply to [tex]\(-12\)[/tex] (the constant term) and add up to [tex]\(4\)[/tex] (the coefficient of the [tex]\(x\)[/tex] term).

4. Determine the correct pair of factors:
The numbers that satisfy these conditions are [tex]\(6\)[/tex] and [tex]\(-2\)[/tex]. This is because:
[tex]\[ 6 \times (-2) = -12 \quad \text{and} \quad 6 + (-2) = 4. \][/tex]

5. Write the factored form:
Substitute the numbers into the binomials to get the factorized form:
[tex]\[ (x - 2)(x + 6). \][/tex]

Therefore, the factored form of the expression [tex]\(x^2 + 4x - 12\)[/tex] is
[tex]\[ (x - 2)(x + 6). \][/tex]

This is the correct answer.