Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Evaluate [tex]\((0.064)^{-1 / 3}\)[/tex]

Sagot :

To evaluate [tex]\((0.064)^{-1/3}\)[/tex], follow the detailed steps below:

1. Understand the Expression:
[tex]\((0.064)^{-1/3}\)[/tex] represents raising the number [tex]\(0.064\)[/tex] to the power of [tex]\(-1/3\)[/tex].

2. Interpret the Negative Exponent:
A negative exponent indicates taking the reciprocal of the base. Therefore,
[tex]\[ (0.064)^{-1/3} = \frac{1}{(0.064)^{1/3}} \][/tex]

3. Calculate the Cube Root:
Next, we need to find the cube root of [tex]\(0.064\)[/tex]. The cube root of a number [tex]\(a\)[/tex] is a number [tex]\(b\)[/tex] such that [tex]\(b^3 = a\)[/tex]. For [tex]\(0.064\)[/tex],
[tex]\[ (0.064)^{1/3} = 0.4 \][/tex]

4. Take the Reciprocal:
Now that we have the cube root of [tex]\(0.064\)[/tex], which is [tex]\(0.4\)[/tex], we can proceed to find the reciprocal:
[tex]\[ \frac{1}{0.4} = 2.5 \][/tex]

So, [tex]\((0.064)^{-1/3} = 2.5\)[/tex].

Therefore, the value of [tex]\((0.064)^{-1 / 3}\)[/tex] is [tex]\(2.5\)[/tex].