At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how many years the account had been accumulating interest using the compound interest formula, we start with the given expression representing the value of the investment account:
[tex]\[ 10,350\left(1+\frac{0.04}{12}\right)^{120} \][/tex]
The compound interest formula is:
[tex]\[ A(t)=P\left(1+\frac{r}{n}\right)^{nt} \][/tex]
Here, the parameters are:
- [tex]\( P \)[/tex]: the principal amount ($10,350)
- [tex]\( r \)[/tex]: the annual interest rate (0.04)
- [tex]\( n \)[/tex]: the number of times the interest is compounded per year (12)
- [tex]\( t \)[/tex]: the number of years the money is invested or borrowed for.
In the given expression, the term inside the parenthesis is:
[tex]\[ \left(1+\frac{0.04}{12}\right) \][/tex]
And it is raised to the power of 120:
[tex]\[ \left(1+\frac{0.04}{12}\right)^{120} \][/tex]
In the compound interest formula, the exponent [tex]\( nt \)[/tex] represents the total number of compounding periods. Here, it is given as 120.
To find out the number of years [tex]\( t \)[/tex], we can use the relation:
[tex]\[ nt = 120 \][/tex]
Given:
[tex]\[ n = 12 \][/tex] (compounding periods per year)
So, we can solve for [tex]\( t \)[/tex]:
[tex]\[ 12t = 120 \][/tex]
Divide both sides of the equation by 12:
[tex]\[ t = \frac{120}{12} \][/tex]
Thus:
[tex]\[ t = 10 \][/tex]
Therefore, the account had been accumulating interest for:
[tex]\[ \boxed{10} \][/tex] years.
[tex]\[ 10,350\left(1+\frac{0.04}{12}\right)^{120} \][/tex]
The compound interest formula is:
[tex]\[ A(t)=P\left(1+\frac{r}{n}\right)^{nt} \][/tex]
Here, the parameters are:
- [tex]\( P \)[/tex]: the principal amount ($10,350)
- [tex]\( r \)[/tex]: the annual interest rate (0.04)
- [tex]\( n \)[/tex]: the number of times the interest is compounded per year (12)
- [tex]\( t \)[/tex]: the number of years the money is invested or borrowed for.
In the given expression, the term inside the parenthesis is:
[tex]\[ \left(1+\frac{0.04}{12}\right) \][/tex]
And it is raised to the power of 120:
[tex]\[ \left(1+\frac{0.04}{12}\right)^{120} \][/tex]
In the compound interest formula, the exponent [tex]\( nt \)[/tex] represents the total number of compounding periods. Here, it is given as 120.
To find out the number of years [tex]\( t \)[/tex], we can use the relation:
[tex]\[ nt = 120 \][/tex]
Given:
[tex]\[ n = 12 \][/tex] (compounding periods per year)
So, we can solve for [tex]\( t \)[/tex]:
[tex]\[ 12t = 120 \][/tex]
Divide both sides of the equation by 12:
[tex]\[ t = \frac{120}{12} \][/tex]
Thus:
[tex]\[ t = 10 \][/tex]
Therefore, the account had been accumulating interest for:
[tex]\[ \boxed{10} \][/tex] years.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.