Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the optimal number of standard-mix and deluxe-mix packages to maximize revenue, we need to formulate and solve a linear programming problem. Let's summarize and define the problem in a structured manner:
### Objective Function:
Our goal is to maximize the revenue [tex]\( R \)[/tex] given by:
[tex]\[ R(x, y) = 1.95x + 2.25y \][/tex]
where:
- [tex]\( x \)[/tex] is the number of standard-mix packages,
- [tex]\( y \)[/tex] is the number of deluxe-mix packages.
### Constraints:
1. Cashews Constraint: There are 15,000 grams of cashews available. Each standard-mix uses 100 grams and each deluxe-mix uses 150 grams:
[tex]\[ 100x + 150y \leq 15000 \][/tex]
Simplifying:
[tex]\[ 2x + 3y \leq 300 \][/tex]
2. Peanuts Constraint: There are 20,000 grams of peanuts available. Each standard-mix uses 200 grams and each deluxe-mix uses 50 grams:
[tex]\[ 200x + 50y \leq 20000 \][/tex]
Simplifying:
[tex]\[ 4x + y \leq 400 \][/tex]
3. Standard-Deluxe Ratio Constraint: The number of standard-mix packages must be at least as great as the number of deluxe-mix packages:
[tex]\[ x \geq y \][/tex]
Or equivalently:
[tex]\[ y \leq x \][/tex]
4. Non-Negativity Constraints: The number of packages cannot be negative:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
### Solution:
Given the constraints and the objective function, the problem can be solved using linear programming methods. The results are:
- Number of standard-mix packages ([tex]\( x \)[/tex]): 90
- Number of deluxe-mix packages ([tex]\( y \)[/tex]): 40
The maximum revenue achieved by this combination is:
[tex]\[ \text{Maximum Revenue} = 1.95 \cdot 90 + 2.25 \cdot 40 \][/tex]
[tex]\[ \text{Maximum Revenue} = 175.5 + 90 \][/tex]
[tex]\[ \text{Maximum Revenue} = 265.5 \][/tex]
### Conclusion:
The confectioner should package:
- 90 standard-mix packages
- 40 deluxe-mix packages
This combination will maximize the revenue, resulting in a total revenue of \$265.50.
### Objective Function:
Our goal is to maximize the revenue [tex]\( R \)[/tex] given by:
[tex]\[ R(x, y) = 1.95x + 2.25y \][/tex]
where:
- [tex]\( x \)[/tex] is the number of standard-mix packages,
- [tex]\( y \)[/tex] is the number of deluxe-mix packages.
### Constraints:
1. Cashews Constraint: There are 15,000 grams of cashews available. Each standard-mix uses 100 grams and each deluxe-mix uses 150 grams:
[tex]\[ 100x + 150y \leq 15000 \][/tex]
Simplifying:
[tex]\[ 2x + 3y \leq 300 \][/tex]
2. Peanuts Constraint: There are 20,000 grams of peanuts available. Each standard-mix uses 200 grams and each deluxe-mix uses 50 grams:
[tex]\[ 200x + 50y \leq 20000 \][/tex]
Simplifying:
[tex]\[ 4x + y \leq 400 \][/tex]
3. Standard-Deluxe Ratio Constraint: The number of standard-mix packages must be at least as great as the number of deluxe-mix packages:
[tex]\[ x \geq y \][/tex]
Or equivalently:
[tex]\[ y \leq x \][/tex]
4. Non-Negativity Constraints: The number of packages cannot be negative:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
### Solution:
Given the constraints and the objective function, the problem can be solved using linear programming methods. The results are:
- Number of standard-mix packages ([tex]\( x \)[/tex]): 90
- Number of deluxe-mix packages ([tex]\( y \)[/tex]): 40
The maximum revenue achieved by this combination is:
[tex]\[ \text{Maximum Revenue} = 1.95 \cdot 90 + 2.25 \cdot 40 \][/tex]
[tex]\[ \text{Maximum Revenue} = 175.5 + 90 \][/tex]
[tex]\[ \text{Maximum Revenue} = 265.5 \][/tex]
### Conclusion:
The confectioner should package:
- 90 standard-mix packages
- 40 deluxe-mix packages
This combination will maximize the revenue, resulting in a total revenue of \$265.50.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.