Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
We are given three points:
- [tex]\( E(-1, d) \)[/tex]
- [tex]\( F(1, 1) \)[/tex]
- [tex]\( G(3, -5) \)[/tex]
It is also given that point [tex]\( F \)[/tex] is the midpoint of the line segment [tex]\( EG \)[/tex].
### Step 1: Using the Midpoint Formula
The coordinates of the midpoint [tex]\( M \)[/tex] of a line segment joining two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, point [tex]\( F \)[/tex] is the midpoint of [tex]\( E \)[/tex] and [tex]\( G \)[/tex]. Therefore:
[tex]\[ F = \left( \frac{-1 + 3}{2}, \frac{d + (-5)}{2} \right) \][/tex]
Given that [tex]\( F(1, 1) \)[/tex], we can now set up the equations as follows:
### Step 2: Set up the equations for the x-coordinates
[tex]\[ 1 = \frac{-1 + 3}{2} \][/tex]
### Step 3: Solve for the x-coordinates to verify
[tex]\[ 1 = \frac{2}{2} \][/tex]
[tex]\[ 1 = 1 \][/tex]
The x-coordinate part is verified indeed. Now, let's move on to the y-coordinates.
### Step 4: Set up the equations for the y-coordinates
[tex]\[ 1 = \frac{d + (-5)}{2} \][/tex]
### Step 5: Solve for [tex]\( d \)[/tex]
[tex]\[ 1 = \frac{d - 5}{2} \][/tex]
[tex]\[ 2 \times 1 = d - 5 \][/tex]
[tex]\[ 2 = d - 5 \][/tex]
Add 5 to both sides of the equation:
[tex]\[ 2 + 5 = d \][/tex]
[tex]\[ d = 7 \][/tex]
### Conclusion
The value of [tex]\( d \)[/tex] is [tex]\( \boxed{7} \)[/tex].
We are given three points:
- [tex]\( E(-1, d) \)[/tex]
- [tex]\( F(1, 1) \)[/tex]
- [tex]\( G(3, -5) \)[/tex]
It is also given that point [tex]\( F \)[/tex] is the midpoint of the line segment [tex]\( EG \)[/tex].
### Step 1: Using the Midpoint Formula
The coordinates of the midpoint [tex]\( M \)[/tex] of a line segment joining two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, point [tex]\( F \)[/tex] is the midpoint of [tex]\( E \)[/tex] and [tex]\( G \)[/tex]. Therefore:
[tex]\[ F = \left( \frac{-1 + 3}{2}, \frac{d + (-5)}{2} \right) \][/tex]
Given that [tex]\( F(1, 1) \)[/tex], we can now set up the equations as follows:
### Step 2: Set up the equations for the x-coordinates
[tex]\[ 1 = \frac{-1 + 3}{2} \][/tex]
### Step 3: Solve for the x-coordinates to verify
[tex]\[ 1 = \frac{2}{2} \][/tex]
[tex]\[ 1 = 1 \][/tex]
The x-coordinate part is verified indeed. Now, let's move on to the y-coordinates.
### Step 4: Set up the equations for the y-coordinates
[tex]\[ 1 = \frac{d + (-5)}{2} \][/tex]
### Step 5: Solve for [tex]\( d \)[/tex]
[tex]\[ 1 = \frac{d - 5}{2} \][/tex]
[tex]\[ 2 \times 1 = d - 5 \][/tex]
[tex]\[ 2 = d - 5 \][/tex]
Add 5 to both sides of the equation:
[tex]\[ 2 + 5 = d \][/tex]
[tex]\[ d = 7 \][/tex]
### Conclusion
The value of [tex]\( d \)[/tex] is [tex]\( \boxed{7} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.