Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
We are given three points:
- [tex]\( E(-1, d) \)[/tex]
- [tex]\( F(1, 1) \)[/tex]
- [tex]\( G(3, -5) \)[/tex]
It is also given that point [tex]\( F \)[/tex] is the midpoint of the line segment [tex]\( EG \)[/tex].
### Step 1: Using the Midpoint Formula
The coordinates of the midpoint [tex]\( M \)[/tex] of a line segment joining two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, point [tex]\( F \)[/tex] is the midpoint of [tex]\( E \)[/tex] and [tex]\( G \)[/tex]. Therefore:
[tex]\[ F = \left( \frac{-1 + 3}{2}, \frac{d + (-5)}{2} \right) \][/tex]
Given that [tex]\( F(1, 1) \)[/tex], we can now set up the equations as follows:
### Step 2: Set up the equations for the x-coordinates
[tex]\[ 1 = \frac{-1 + 3}{2} \][/tex]
### Step 3: Solve for the x-coordinates to verify
[tex]\[ 1 = \frac{2}{2} \][/tex]
[tex]\[ 1 = 1 \][/tex]
The x-coordinate part is verified indeed. Now, let's move on to the y-coordinates.
### Step 4: Set up the equations for the y-coordinates
[tex]\[ 1 = \frac{d + (-5)}{2} \][/tex]
### Step 5: Solve for [tex]\( d \)[/tex]
[tex]\[ 1 = \frac{d - 5}{2} \][/tex]
[tex]\[ 2 \times 1 = d - 5 \][/tex]
[tex]\[ 2 = d - 5 \][/tex]
Add 5 to both sides of the equation:
[tex]\[ 2 + 5 = d \][/tex]
[tex]\[ d = 7 \][/tex]
### Conclusion
The value of [tex]\( d \)[/tex] is [tex]\( \boxed{7} \)[/tex].
We are given three points:
- [tex]\( E(-1, d) \)[/tex]
- [tex]\( F(1, 1) \)[/tex]
- [tex]\( G(3, -5) \)[/tex]
It is also given that point [tex]\( F \)[/tex] is the midpoint of the line segment [tex]\( EG \)[/tex].
### Step 1: Using the Midpoint Formula
The coordinates of the midpoint [tex]\( M \)[/tex] of a line segment joining two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, point [tex]\( F \)[/tex] is the midpoint of [tex]\( E \)[/tex] and [tex]\( G \)[/tex]. Therefore:
[tex]\[ F = \left( \frac{-1 + 3}{2}, \frac{d + (-5)}{2} \right) \][/tex]
Given that [tex]\( F(1, 1) \)[/tex], we can now set up the equations as follows:
### Step 2: Set up the equations for the x-coordinates
[tex]\[ 1 = \frac{-1 + 3}{2} \][/tex]
### Step 3: Solve for the x-coordinates to verify
[tex]\[ 1 = \frac{2}{2} \][/tex]
[tex]\[ 1 = 1 \][/tex]
The x-coordinate part is verified indeed. Now, let's move on to the y-coordinates.
### Step 4: Set up the equations for the y-coordinates
[tex]\[ 1 = \frac{d + (-5)}{2} \][/tex]
### Step 5: Solve for [tex]\( d \)[/tex]
[tex]\[ 1 = \frac{d - 5}{2} \][/tex]
[tex]\[ 2 \times 1 = d - 5 \][/tex]
[tex]\[ 2 = d - 5 \][/tex]
Add 5 to both sides of the equation:
[tex]\[ 2 + 5 = d \][/tex]
[tex]\[ d = 7 \][/tex]
### Conclusion
The value of [tex]\( d \)[/tex] is [tex]\( \boxed{7} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.