Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find the radius of curvature of the rectangular hyperbola [tex]r^2 = a^2 \sec 2\theta[/tex].

Sagot :

To find the radius of curvature [tex]\( R \)[/tex] of the rectangular hyperbola given by the equation

[tex]\[ r^2 = a^2 \sec(2\theta), \][/tex]

we will follow a series of steps involving differentiation and the use of a specific formula for radius of curvature in polar coordinates.

### Step-by-Step Solution:

1. Given Equation:

[tex]\[ r^2 = a^2 \sec(2\theta) \][/tex]

2. Solving for [tex]\( r \)[/tex]:

[tex]\[ r = \sqrt{\frac{a^2}{\cos(2\theta)}} = \frac{a}{\sqrt{\cos(2\theta)}} \][/tex]

3. First Derivative [tex]\( \frac{dr}{d\theta} \)[/tex]:

Differentiate [tex]\( r \)[/tex] with respect to [tex]\( \theta \)[/tex]:

[tex]\[ r' = \frac{d}{d\theta} \left( \frac{a}{\sqrt{\cos(2\theta)}} \right) \][/tex]

Using the chain rule:

[tex]\[ r' = \frac{a \cdot \left(- \frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}^3} \cdot 2\right)}{2} = \frac{a \cdot (-2\sin(2\theta))}{2\cos(2\theta)^{3/2}} = \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \][/tex]

4. Second Derivative [tex]\( \frac{d^2r}{d\theta^2} \)[/tex]:

Differentiate [tex]\( r' \)[/tex] with respect to [tex]\( \theta \)[/tex]:

[tex]\[ r'' = \frac{d}{d\theta} \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]

Using the product and chain rule, we get:

[tex]\[ r'' = a \left[ \frac{(2\cos(2\theta) \cdot 3\sin(2\theta))}{\cos(2\theta)^3} + \frac{2(-\cos(2\theta)^2\sin(2\theta))}{\cos(2\theta)^3} \right] = a \left( \frac{3\sin(2\theta)^2}{\cos(2\theta)^{5/2}} - \frac{2\cos(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]

Simplifying:

[tex]\[ r'' = \frac{3a\sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \][/tex]

5. Radius of Curvature [tex]\( R \)[/tex]:

The radius of curvature formula in polar coordinates is:

[tex]\[ R = \frac{(1 + (r')^2)^{3/2}}{|r''|} \][/tex]

Substituting [tex]\( r' \)[/tex] and [tex]\( r'' \)[/tex]:

[tex]\[ R = \frac{\left(1 + \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right)^2\right)^{3/2}}{\left| \frac{3a \sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \right| } \][/tex]

Simplifying the expression inside the numerator:

[tex]\[ R = \frac{\left(1 + \frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} \right)^{3/2}}{\left| \frac{3a \sin^2(2\theta)}{\cos^{5/2}(2\theta)} + \frac{2a}{\cos^{3/2}(2\theta)} \right| } \][/tex]

Thus, the final formula for the radius of curvature [tex]\( R \)[/tex] is:

[tex]\[ R = \frac{\left(a^2 \frac{\sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right|} \][/tex]


In conclusion, after simplifying, the radius of curvature of the given rectangular hyperbola is:

[tex]\[ R = \frac{\left(\frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right| }. \][/tex]