At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the radius of curvature [tex]\( R \)[/tex] of the rectangular hyperbola given by the equation
[tex]\[ r^2 = a^2 \sec(2\theta), \][/tex]
we will follow a series of steps involving differentiation and the use of a specific formula for radius of curvature in polar coordinates.
### Step-by-Step Solution:
1. Given Equation:
[tex]\[ r^2 = a^2 \sec(2\theta) \][/tex]
2. Solving for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{a^2}{\cos(2\theta)}} = \frac{a}{\sqrt{\cos(2\theta)}} \][/tex]
3. First Derivative [tex]\( \frac{dr}{d\theta} \)[/tex]:
Differentiate [tex]\( r \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r' = \frac{d}{d\theta} \left( \frac{a}{\sqrt{\cos(2\theta)}} \right) \][/tex]
Using the chain rule:
[tex]\[ r' = \frac{a \cdot \left(- \frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}^3} \cdot 2\right)}{2} = \frac{a \cdot (-2\sin(2\theta))}{2\cos(2\theta)^{3/2}} = \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \][/tex]
4. Second Derivative [tex]\( \frac{d^2r}{d\theta^2} \)[/tex]:
Differentiate [tex]\( r' \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r'' = \frac{d}{d\theta} \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Using the product and chain rule, we get:
[tex]\[ r'' = a \left[ \frac{(2\cos(2\theta) \cdot 3\sin(2\theta))}{\cos(2\theta)^3} + \frac{2(-\cos(2\theta)^2\sin(2\theta))}{\cos(2\theta)^3} \right] = a \left( \frac{3\sin(2\theta)^2}{\cos(2\theta)^{5/2}} - \frac{2\cos(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Simplifying:
[tex]\[ r'' = \frac{3a\sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \][/tex]
5. Radius of Curvature [tex]\( R \)[/tex]:
The radius of curvature formula in polar coordinates is:
[tex]\[ R = \frac{(1 + (r')^2)^{3/2}}{|r''|} \][/tex]
Substituting [tex]\( r' \)[/tex] and [tex]\( r'' \)[/tex]:
[tex]\[ R = \frac{\left(1 + \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right)^2\right)^{3/2}}{\left| \frac{3a \sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \right| } \][/tex]
Simplifying the expression inside the numerator:
[tex]\[ R = \frac{\left(1 + \frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} \right)^{3/2}}{\left| \frac{3a \sin^2(2\theta)}{\cos^{5/2}(2\theta)} + \frac{2a}{\cos^{3/2}(2\theta)} \right| } \][/tex]
Thus, the final formula for the radius of curvature [tex]\( R \)[/tex] is:
[tex]\[ R = \frac{\left(a^2 \frac{\sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right|} \][/tex]
In conclusion, after simplifying, the radius of curvature of the given rectangular hyperbola is:
[tex]\[ R = \frac{\left(\frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right| }. \][/tex]
[tex]\[ r^2 = a^2 \sec(2\theta), \][/tex]
we will follow a series of steps involving differentiation and the use of a specific formula for radius of curvature in polar coordinates.
### Step-by-Step Solution:
1. Given Equation:
[tex]\[ r^2 = a^2 \sec(2\theta) \][/tex]
2. Solving for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{a^2}{\cos(2\theta)}} = \frac{a}{\sqrt{\cos(2\theta)}} \][/tex]
3. First Derivative [tex]\( \frac{dr}{d\theta} \)[/tex]:
Differentiate [tex]\( r \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r' = \frac{d}{d\theta} \left( \frac{a}{\sqrt{\cos(2\theta)}} \right) \][/tex]
Using the chain rule:
[tex]\[ r' = \frac{a \cdot \left(- \frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}^3} \cdot 2\right)}{2} = \frac{a \cdot (-2\sin(2\theta))}{2\cos(2\theta)^{3/2}} = \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \][/tex]
4. Second Derivative [tex]\( \frac{d^2r}{d\theta^2} \)[/tex]:
Differentiate [tex]\( r' \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r'' = \frac{d}{d\theta} \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Using the product and chain rule, we get:
[tex]\[ r'' = a \left[ \frac{(2\cos(2\theta) \cdot 3\sin(2\theta))}{\cos(2\theta)^3} + \frac{2(-\cos(2\theta)^2\sin(2\theta))}{\cos(2\theta)^3} \right] = a \left( \frac{3\sin(2\theta)^2}{\cos(2\theta)^{5/2}} - \frac{2\cos(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Simplifying:
[tex]\[ r'' = \frac{3a\sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \][/tex]
5. Radius of Curvature [tex]\( R \)[/tex]:
The radius of curvature formula in polar coordinates is:
[tex]\[ R = \frac{(1 + (r')^2)^{3/2}}{|r''|} \][/tex]
Substituting [tex]\( r' \)[/tex] and [tex]\( r'' \)[/tex]:
[tex]\[ R = \frac{\left(1 + \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right)^2\right)^{3/2}}{\left| \frac{3a \sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \right| } \][/tex]
Simplifying the expression inside the numerator:
[tex]\[ R = \frac{\left(1 + \frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} \right)^{3/2}}{\left| \frac{3a \sin^2(2\theta)}{\cos^{5/2}(2\theta)} + \frac{2a}{\cos^{3/2}(2\theta)} \right| } \][/tex]
Thus, the final formula for the radius of curvature [tex]\( R \)[/tex] is:
[tex]\[ R = \frac{\left(a^2 \frac{\sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right|} \][/tex]
In conclusion, after simplifying, the radius of curvature of the given rectangular hyperbola is:
[tex]\[ R = \frac{\left(\frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right| }. \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.