Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
### Solution:
### 1. Find the vertices of the feasible region.
To find the vertices, we need to determine where the constraints intersect. The constraints are:
1. [tex]\( 2x + 3y \leq 300 \)[/tex]
2. [tex]\( 4x + y \leq 400 \)[/tex]
3. [tex]\( y \leq x \)[/tex]
4. [tex]\( x \geq 0 \)[/tex]
5. [tex]\( y \geq 0 \)[/tex]
#### a. Find the coordinates of vertex 1.
This vertex is where the constraint [tex]\( x \geq 0 \)[/tex] intersects [tex]\( y \leq x \)[/tex] and [tex]\( 4x + y = 400 \)[/tex].
1. Set [tex]\( x = 0 \)[/tex] and solve for [tex]\( y \)[/tex].
2. [tex]\( 4(0) + y = 400 \implies y = 400 \)[/tex].
Since [tex]\( y \leq x \)[/tex], this intersection does not satisfy the constraint [tex]\( y \leq x \)[/tex]. Instead, we check where [tex]\( y = x \)[/tex]:
3. Substitute [tex]\( y = x \)[/tex] in [tex]\( 4x + y = 400 \)[/tex]: [tex]\( 4x + x = 400 \implies 5x = 400 \implies x = 80 \)[/tex], thus [tex]\( y = 80 \)[/tex].
So the coordinates of vertex 1 are [tex]\((80, 80)\)[/tex].
#### b. Find the coordinates of vertex 2.
This vertex is where the constraint [tex]\( y = 0 \)[/tex] intersects [tex]\( 4x + y = 400 \)[/tex].
1. Set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
2. [tex]\( 4x + 0 = 400 \implies 4x = 400 \implies x = 100 \)[/tex].
So the coordinates of vertex 2 are [tex]\((100, 0)\)[/tex].
#### c. Find the coordinates of vertex 3.
This vertex is where the constraints [tex]\( 2x + 3y = 300 \)[/tex] and [tex]\( 4x + y = 400 \)[/tex] intersect.
1. Set up the two equations:
[tex]\( 2x + 3y = 300 \)[/tex]
[tex]\( 4x + y = 400 \)[/tex]
2. Solve the first equation for [tex]\( y \)[/tex]:
[tex]\( y = \frac{400 - 4x}{1} = 400 - 4x \)[/tex].
3. Substitute [tex]\( y = \frac{300 - 2x}{3} \)[/tex] into the second equation:
[tex]\( 4x + \frac{300 - 2x}{3} = 400 \)[/tex]
4. Multiply through by 3 to clear the fraction:
[tex]\( 12x + 300 - 2x = 1200 \)[/tex]
[tex]\( 10x = 900 \)[/tex]
[tex]\( x = 90 \)[/tex]
5. Substitute [tex]\( x = 90 \)[/tex] back into [tex]\( y = \frac{300 - 2x}{3} \)[/tex]:
[tex]\( y = \frac{300 - 2(90)}{3} = \frac{300 - 180}{3} = \frac{120}{3} = 40 \)[/tex].
So the coordinates of vertex 3 are [tex]\((90, 40)\)[/tex].
#### d. Find the coordinates of vertex 4.
This vertex is where the constraint [tex]\( y = 0 \)[/tex] intersects [tex]\( 2x + 3y = 300 \)[/tex].
1. Set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
2. [tex]\( 2x + 0 = 300 \implies 2x = 300 \implies x = 150 \)[/tex].
So the coordinates of vertex 4 are [tex]\((150, 0)\)[/tex].
### 2. Find the value of the revenue function [tex]\( R \)[/tex] at each vertex.
Revenue Function: [tex]\( R(x, y) = 1.95x + 2.25y \)[/tex]
#### a. Value of [tex]\( R \)[/tex] at vertex 1:
Vertex 1 coordinates: [tex]\((80, 80)\)[/tex]
[tex]\[ R(80, 80) = 1.95(80) + 2.25(80) = 1.95 \cdot 80 + 2.25 \cdot 80 = 156 + 180 = 336. \][/tex]
#### b. Value of [tex]\( R \)[/tex] at vertex 2:
Vertex 2 coordinates: [tex]\((100, 0)\)[/tex]
[tex]\[ R(100, 0) = 1.95(100) + 2.25(0) = 1.95 \cdot 100 + 0 = 195 \][/tex]
#### c. Value of [tex]\( R \)[/tex] at vertex 3:
Vertex 3 coordinates: [tex]\((90, 40)\)[/tex]
[tex]\[ R(90, 40) = 1.95(90) + 2.25(40) = 1.95 \cdot 90 + 2.25 \cdot 40 = 175.5 + 90 = 265.5 \][/tex]
#### d. Value of [tex]\( R \)[/tex] at vertex 4:
Vertex 4 coordinates: [tex]\((150, 0)\)[/tex]
[tex]\[ R(150, 0) = 1.95(150) + 2.25(0) = 1.95 \cdot 150 + 0 = 292.5 \][/tex]
### 3. How many standard-mix packages and how many deluxe-mix packages will the confectioner need to produce to maximize her revenue?
To maximize revenue, we look for the highest value of [tex]\( R \)[/tex]:
- [tex]\( R = 336 \)[/tex] at vertex [tex]\((80, 80)\)[/tex]
- [tex]\( R = 195 \)[/tex] at vertex [tex]\((100, 0)\)[/tex]
- [tex]\( R = 265.5 \)[/tex] at vertex [tex]\((90, 40)\)[/tex]
- [tex]\( R = 292.5 \)[/tex] at vertex [tex]\((150, 0)\)[/tex]
The highest value of [tex]\( R \)[/tex] is 336 at vertex [tex]\((80, 80)\)[/tex].
Thus, to maximize revenue, the confectioner should produce 80 standard-mix packages and 80 deluxe-mix packages.
### 1. Find the vertices of the feasible region.
To find the vertices, we need to determine where the constraints intersect. The constraints are:
1. [tex]\( 2x + 3y \leq 300 \)[/tex]
2. [tex]\( 4x + y \leq 400 \)[/tex]
3. [tex]\( y \leq x \)[/tex]
4. [tex]\( x \geq 0 \)[/tex]
5. [tex]\( y \geq 0 \)[/tex]
#### a. Find the coordinates of vertex 1.
This vertex is where the constraint [tex]\( x \geq 0 \)[/tex] intersects [tex]\( y \leq x \)[/tex] and [tex]\( 4x + y = 400 \)[/tex].
1. Set [tex]\( x = 0 \)[/tex] and solve for [tex]\( y \)[/tex].
2. [tex]\( 4(0) + y = 400 \implies y = 400 \)[/tex].
Since [tex]\( y \leq x \)[/tex], this intersection does not satisfy the constraint [tex]\( y \leq x \)[/tex]. Instead, we check where [tex]\( y = x \)[/tex]:
3. Substitute [tex]\( y = x \)[/tex] in [tex]\( 4x + y = 400 \)[/tex]: [tex]\( 4x + x = 400 \implies 5x = 400 \implies x = 80 \)[/tex], thus [tex]\( y = 80 \)[/tex].
So the coordinates of vertex 1 are [tex]\((80, 80)\)[/tex].
#### b. Find the coordinates of vertex 2.
This vertex is where the constraint [tex]\( y = 0 \)[/tex] intersects [tex]\( 4x + y = 400 \)[/tex].
1. Set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
2. [tex]\( 4x + 0 = 400 \implies 4x = 400 \implies x = 100 \)[/tex].
So the coordinates of vertex 2 are [tex]\((100, 0)\)[/tex].
#### c. Find the coordinates of vertex 3.
This vertex is where the constraints [tex]\( 2x + 3y = 300 \)[/tex] and [tex]\( 4x + y = 400 \)[/tex] intersect.
1. Set up the two equations:
[tex]\( 2x + 3y = 300 \)[/tex]
[tex]\( 4x + y = 400 \)[/tex]
2. Solve the first equation for [tex]\( y \)[/tex]:
[tex]\( y = \frac{400 - 4x}{1} = 400 - 4x \)[/tex].
3. Substitute [tex]\( y = \frac{300 - 2x}{3} \)[/tex] into the second equation:
[tex]\( 4x + \frac{300 - 2x}{3} = 400 \)[/tex]
4. Multiply through by 3 to clear the fraction:
[tex]\( 12x + 300 - 2x = 1200 \)[/tex]
[tex]\( 10x = 900 \)[/tex]
[tex]\( x = 90 \)[/tex]
5. Substitute [tex]\( x = 90 \)[/tex] back into [tex]\( y = \frac{300 - 2x}{3} \)[/tex]:
[tex]\( y = \frac{300 - 2(90)}{3} = \frac{300 - 180}{3} = \frac{120}{3} = 40 \)[/tex].
So the coordinates of vertex 3 are [tex]\((90, 40)\)[/tex].
#### d. Find the coordinates of vertex 4.
This vertex is where the constraint [tex]\( y = 0 \)[/tex] intersects [tex]\( 2x + 3y = 300 \)[/tex].
1. Set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
2. [tex]\( 2x + 0 = 300 \implies 2x = 300 \implies x = 150 \)[/tex].
So the coordinates of vertex 4 are [tex]\((150, 0)\)[/tex].
### 2. Find the value of the revenue function [tex]\( R \)[/tex] at each vertex.
Revenue Function: [tex]\( R(x, y) = 1.95x + 2.25y \)[/tex]
#### a. Value of [tex]\( R \)[/tex] at vertex 1:
Vertex 1 coordinates: [tex]\((80, 80)\)[/tex]
[tex]\[ R(80, 80) = 1.95(80) + 2.25(80) = 1.95 \cdot 80 + 2.25 \cdot 80 = 156 + 180 = 336. \][/tex]
#### b. Value of [tex]\( R \)[/tex] at vertex 2:
Vertex 2 coordinates: [tex]\((100, 0)\)[/tex]
[tex]\[ R(100, 0) = 1.95(100) + 2.25(0) = 1.95 \cdot 100 + 0 = 195 \][/tex]
#### c. Value of [tex]\( R \)[/tex] at vertex 3:
Vertex 3 coordinates: [tex]\((90, 40)\)[/tex]
[tex]\[ R(90, 40) = 1.95(90) + 2.25(40) = 1.95 \cdot 90 + 2.25 \cdot 40 = 175.5 + 90 = 265.5 \][/tex]
#### d. Value of [tex]\( R \)[/tex] at vertex 4:
Vertex 4 coordinates: [tex]\((150, 0)\)[/tex]
[tex]\[ R(150, 0) = 1.95(150) + 2.25(0) = 1.95 \cdot 150 + 0 = 292.5 \][/tex]
### 3. How many standard-mix packages and how many deluxe-mix packages will the confectioner need to produce to maximize her revenue?
To maximize revenue, we look for the highest value of [tex]\( R \)[/tex]:
- [tex]\( R = 336 \)[/tex] at vertex [tex]\((80, 80)\)[/tex]
- [tex]\( R = 195 \)[/tex] at vertex [tex]\((100, 0)\)[/tex]
- [tex]\( R = 265.5 \)[/tex] at vertex [tex]\((90, 40)\)[/tex]
- [tex]\( R = 292.5 \)[/tex] at vertex [tex]\((150, 0)\)[/tex]
The highest value of [tex]\( R \)[/tex] is 336 at vertex [tex]\((80, 80)\)[/tex].
Thus, to maximize revenue, the confectioner should produce 80 standard-mix packages and 80 deluxe-mix packages.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.