Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

12. A car of mass [tex]m = 1200 \, \text{kg}[/tex] is traveling at a speed of [tex]50 \, \text{km/h}[/tex]. Suddenly, the brakes are applied and the car is brought to a stop over a distance of [tex]20 \, \text{m}[/tex] assuming constant braking force. Find:

a) The magnitude of the braking force.
b) The time required to stop.

Sagot :

Sure, let's solve this step by step.

### Problem Statement
Given:
1. Mass of the car, [tex]\( m = 1200 \, \text{kg} \)[/tex]
2. Initial speed of the car, [tex]\( v_0 = 50 \, \text{km/h} \)[/tex]
3. Stopping distance, [tex]\( d = 20 \, \text{m} \)[/tex]
4. The car comes to a stop, so the final speed [tex]\( v_f = 0 \, \text{m/s} \)[/tex]

We need to find:
a) The magnitude of the braking force.
b) The time required to stop.

### Step-by-Step Solution

Step 1: Convert the speed from km/h to m/s

[tex]\[ v_0 = 50 \, \text{km/h} \][/tex]
[tex]\[ v_0 = 50 \times \frac{1000 \, \text{m}}{1 \, \text{km}} \times \frac{1 \, \text{h}}{3600 \, \text{s}} \][/tex]
[tex]\[ v_0 = \frac{50 \times 1000}{3600} \][/tex]
[tex]\[ v_0 = \frac{50000}{3600} \][/tex]
[tex]\[ v_0 \approx 13.89 \, \text{m/s} \][/tex]

Step 2: Calculate the magnitude of the braking force

Using the work-energy principle:

The work done by the braking force [tex]\( W \)[/tex] is equal to the change in kinetic energy ([tex]\( \Delta KE \)[/tex]).

[tex]\[ \Delta KE = \text{Initial Kinetic Energy} - \text{Final Kinetic Energy} \][/tex]
[tex]\[ \Delta KE = \frac{1}{2} m v_0^2 - \frac{1}{2} m v_f^2 \][/tex]

Since [tex]\( v_f = 0 \)[/tex]:

[tex]\[ \Delta KE = \frac{1}{2} m v_0^2 \][/tex]

The work done by the braking force is also equal to the force multiplied by the distance:

[tex]\[ W = F_d \times d \][/tex]

Equating both expressions for work:

[tex]\[ F_d \times d = \frac{1}{2} m v_0^2 \][/tex]

Solving for the braking force [tex]\( F_d \)[/tex]:

[tex]\[ F_d = \frac{\frac{1}{2} m v_0^2}{d} \][/tex]

Substitute the known values:

[tex]\[ F_d = \frac{\frac{1}{2} \times 1200 \, \text{kg} \times (13.89 \, \text{m/s})^2}{20 \, \text{m}} \][/tex]

After evaluating the above expression, we get:

[tex]\[ F_d \approx 5787.04 \, \text{N} \][/tex]

So, the magnitude of the braking force is approximately [tex]\( 5787.04 \, \text{N} \)[/tex].

Step 3: Calculate the time required to stop

First, we need to find the acceleration [tex]\( a \)[/tex] using Newton's second law:

[tex]\[ F_d = m \times a \][/tex]

Solving for [tex]\( a \)[/tex]:

[tex]\[ a = \frac{F_d}{m} \][/tex]
[tex]\[ a = \frac{5787.04 \, \text{N}}{1200 \, \text{kg}} \][/tex]
[tex]\[ a \approx 4.82 \, \text{m/s}^2 \][/tex]

Next, use the first equation of motion to find the time [tex]\( t \)[/tex]:

[tex]\[ v_f = v_0 + a \times t \][/tex]

Since [tex]\( v_f = 0 \)[/tex]:

[tex]\[ 0 = 13.89 \, \text{m/s} - 4.82 \, \text{m/s}^2 \times t \][/tex]
[tex]\[ t = \frac{13.89 \, \text{m/s}}{4.82 \, \text{m/s}^2} \][/tex]
[tex]\[ t \approx 2.88 \, \text{s} \][/tex]

So, the time required to stop the car is approximately [tex]\( 2.88 \)[/tex] seconds.

### Final Answers
a) The magnitude of the braking force is approximately [tex]\( 5787.04 \, \text{N} \)[/tex].
b) The time required to stop the car is approximately [tex]\( 2.88 \)[/tex] seconds.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.