Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's solve this step by step.
### Problem Statement
Given:
1. Mass of the car, [tex]\( m = 1200 \, \text{kg} \)[/tex]
2. Initial speed of the car, [tex]\( v_0 = 50 \, \text{km/h} \)[/tex]
3. Stopping distance, [tex]\( d = 20 \, \text{m} \)[/tex]
4. The car comes to a stop, so the final speed [tex]\( v_f = 0 \, \text{m/s} \)[/tex]
We need to find:
a) The magnitude of the braking force.
b) The time required to stop.
### Step-by-Step Solution
Step 1: Convert the speed from km/h to m/s
[tex]\[ v_0 = 50 \, \text{km/h} \][/tex]
[tex]\[ v_0 = 50 \times \frac{1000 \, \text{m}}{1 \, \text{km}} \times \frac{1 \, \text{h}}{3600 \, \text{s}} \][/tex]
[tex]\[ v_0 = \frac{50 \times 1000}{3600} \][/tex]
[tex]\[ v_0 = \frac{50000}{3600} \][/tex]
[tex]\[ v_0 \approx 13.89 \, \text{m/s} \][/tex]
Step 2: Calculate the magnitude of the braking force
Using the work-energy principle:
The work done by the braking force [tex]\( W \)[/tex] is equal to the change in kinetic energy ([tex]\( \Delta KE \)[/tex]).
[tex]\[ \Delta KE = \text{Initial Kinetic Energy} - \text{Final Kinetic Energy} \][/tex]
[tex]\[ \Delta KE = \frac{1}{2} m v_0^2 - \frac{1}{2} m v_f^2 \][/tex]
Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ \Delta KE = \frac{1}{2} m v_0^2 \][/tex]
The work done by the braking force is also equal to the force multiplied by the distance:
[tex]\[ W = F_d \times d \][/tex]
Equating both expressions for work:
[tex]\[ F_d \times d = \frac{1}{2} m v_0^2 \][/tex]
Solving for the braking force [tex]\( F_d \)[/tex]:
[tex]\[ F_d = \frac{\frac{1}{2} m v_0^2}{d} \][/tex]
Substitute the known values:
[tex]\[ F_d = \frac{\frac{1}{2} \times 1200 \, \text{kg} \times (13.89 \, \text{m/s})^2}{20 \, \text{m}} \][/tex]
After evaluating the above expression, we get:
[tex]\[ F_d \approx 5787.04 \, \text{N} \][/tex]
So, the magnitude of the braking force is approximately [tex]\( 5787.04 \, \text{N} \)[/tex].
Step 3: Calculate the time required to stop
First, we need to find the acceleration [tex]\( a \)[/tex] using Newton's second law:
[tex]\[ F_d = m \times a \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F_d}{m} \][/tex]
[tex]\[ a = \frac{5787.04 \, \text{N}}{1200 \, \text{kg}} \][/tex]
[tex]\[ a \approx 4.82 \, \text{m/s}^2 \][/tex]
Next, use the first equation of motion to find the time [tex]\( t \)[/tex]:
[tex]\[ v_f = v_0 + a \times t \][/tex]
Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 13.89 \, \text{m/s} - 4.82 \, \text{m/s}^2 \times t \][/tex]
[tex]\[ t = \frac{13.89 \, \text{m/s}}{4.82 \, \text{m/s}^2} \][/tex]
[tex]\[ t \approx 2.88 \, \text{s} \][/tex]
So, the time required to stop the car is approximately [tex]\( 2.88 \)[/tex] seconds.
### Final Answers
a) The magnitude of the braking force is approximately [tex]\( 5787.04 \, \text{N} \)[/tex].
b) The time required to stop the car is approximately [tex]\( 2.88 \)[/tex] seconds.
### Problem Statement
Given:
1. Mass of the car, [tex]\( m = 1200 \, \text{kg} \)[/tex]
2. Initial speed of the car, [tex]\( v_0 = 50 \, \text{km/h} \)[/tex]
3. Stopping distance, [tex]\( d = 20 \, \text{m} \)[/tex]
4. The car comes to a stop, so the final speed [tex]\( v_f = 0 \, \text{m/s} \)[/tex]
We need to find:
a) The magnitude of the braking force.
b) The time required to stop.
### Step-by-Step Solution
Step 1: Convert the speed from km/h to m/s
[tex]\[ v_0 = 50 \, \text{km/h} \][/tex]
[tex]\[ v_0 = 50 \times \frac{1000 \, \text{m}}{1 \, \text{km}} \times \frac{1 \, \text{h}}{3600 \, \text{s}} \][/tex]
[tex]\[ v_0 = \frac{50 \times 1000}{3600} \][/tex]
[tex]\[ v_0 = \frac{50000}{3600} \][/tex]
[tex]\[ v_0 \approx 13.89 \, \text{m/s} \][/tex]
Step 2: Calculate the magnitude of the braking force
Using the work-energy principle:
The work done by the braking force [tex]\( W \)[/tex] is equal to the change in kinetic energy ([tex]\( \Delta KE \)[/tex]).
[tex]\[ \Delta KE = \text{Initial Kinetic Energy} - \text{Final Kinetic Energy} \][/tex]
[tex]\[ \Delta KE = \frac{1}{2} m v_0^2 - \frac{1}{2} m v_f^2 \][/tex]
Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ \Delta KE = \frac{1}{2} m v_0^2 \][/tex]
The work done by the braking force is also equal to the force multiplied by the distance:
[tex]\[ W = F_d \times d \][/tex]
Equating both expressions for work:
[tex]\[ F_d \times d = \frac{1}{2} m v_0^2 \][/tex]
Solving for the braking force [tex]\( F_d \)[/tex]:
[tex]\[ F_d = \frac{\frac{1}{2} m v_0^2}{d} \][/tex]
Substitute the known values:
[tex]\[ F_d = \frac{\frac{1}{2} \times 1200 \, \text{kg} \times (13.89 \, \text{m/s})^2}{20 \, \text{m}} \][/tex]
After evaluating the above expression, we get:
[tex]\[ F_d \approx 5787.04 \, \text{N} \][/tex]
So, the magnitude of the braking force is approximately [tex]\( 5787.04 \, \text{N} \)[/tex].
Step 3: Calculate the time required to stop
First, we need to find the acceleration [tex]\( a \)[/tex] using Newton's second law:
[tex]\[ F_d = m \times a \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F_d}{m} \][/tex]
[tex]\[ a = \frac{5787.04 \, \text{N}}{1200 \, \text{kg}} \][/tex]
[tex]\[ a \approx 4.82 \, \text{m/s}^2 \][/tex]
Next, use the first equation of motion to find the time [tex]\( t \)[/tex]:
[tex]\[ v_f = v_0 + a \times t \][/tex]
Since [tex]\( v_f = 0 \)[/tex]:
[tex]\[ 0 = 13.89 \, \text{m/s} - 4.82 \, \text{m/s}^2 \times t \][/tex]
[tex]\[ t = \frac{13.89 \, \text{m/s}}{4.82 \, \text{m/s}^2} \][/tex]
[tex]\[ t \approx 2.88 \, \text{s} \][/tex]
So, the time required to stop the car is approximately [tex]\( 2.88 \)[/tex] seconds.
### Final Answers
a) The magnitude of the braking force is approximately [tex]\( 5787.04 \, \text{N} \)[/tex].
b) The time required to stop the car is approximately [tex]\( 2.88 \)[/tex] seconds.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.