Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Use synthetic division to determine whether the number [tex]$4i$[/tex] is a zero of the polynomial function.

[tex]\[ g(x) = x^3 - 2x^2 + 4x - 8 \][/tex]


Sagot :

To determine whether [tex]\( 4i \)[/tex] is a zero of the polynomial function [tex]\( g(x) = x^3 - 2x^2 + 4x - 8 \)[/tex], we will use synthetic division.

### Step-by-Step Synthetic Division:

1. Write down the coefficients of the polynomial:
[tex]\[ 1, -2, 4, -8 \][/tex]

2. Set up the synthetic division:
We will be using [tex]\( 4i \)[/tex] as the number to test if it is a zero of the polynomial. In the synthetic division setup, we'll place [tex]\( 4i \)[/tex] on the left and the coefficients on the top row.

[tex]\[ \begin{array}{r|rrrr} 4i & 1 & -2 & 4 & -8 \\ \end{array} \][/tex]

3. Bring down the leading coefficient:
[tex]\[ \begin{array}{r|rrrr} 4i & 1 & -2 & 4 & -8 \\ & & & & \\ & 1 & & & \\ \end{array} \][/tex]

4. Multiply and add down the columns:

- Multiply [tex]\( 1 \)[/tex] by [tex]\( 4i \)[/tex] and add to the next coefficient:
[tex]\[ (1)(4i) = 4i \][/tex]
Add to [tex]\(-2\)[/tex]:
[tex]\[ -2 + 4i = -2 + 4i \][/tex]
[tex]\[ \begin{array}{r|rrrr} 4i & 1 & -2 & 4 & -8 \\ & & 4i & & \\ & 1 & -2+4i & & \\ \end{array} \][/tex]

- Multiply [tex]\(-2 + 4i\)[/tex] by [tex]\( 4i \)[/tex] and add to the next coefficient:
[tex]\[ (-2 + 4i)(4i) = -8i -16 = -16 - 8i \][/tex]
Add to [tex]\( 4 \)[/tex]:
[tex]\[ 4 + (-16 - 8i) = -12 - 8i \][/tex]
[tex]\[ \begin{array}{r|rrrr} 4i & 1 & -2 & 4 & -8 \\ & & 4i & -16 & -8i \\ & 1 & -2+4i & -12-8i & \\ \end{array} \][/tex]

- Multiply [tex]\(-12 - 8i\)[/tex] by [tex]\( 4i \)[/tex] and add to the last coefficient:
[tex]\[ (-12 - 8i)(4i) = -48i + 32 = 32 - 48i \][/tex]
Add to [tex]\(-8\)[/tex]:
[tex]\[ -8 + (32 - 48i) = 24 - 48i \][/tex]
[tex]\[ \begin{array}{r|rrrr} 4i & 1 & -2 & 4 & -8 \\ & & 4i & -16 & -8i \\ & 1 & -2+4i & -12-8i & 24-48i \\ \end{array} \][/tex]

5. Determine the remainder:
The final value, [tex]\( 24 - 48i \)[/tex], is the remainder of the synthetic division.

6. Conclusion:
Since the remainder is [tex]\( 24 - 48i \)[/tex], which is not zero, [tex]\( 4i \)[/tex] is not a zero of the polynomial [tex]\( g(x) = x^3 - 2x^2 + 4x - 8 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.