Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which equations represent circles with the smallest and largest radii, we first need to rewrite each equation in the standard form of a circle's equation: [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex]. This is accomplished by completing the square.
Let's complete the square for each equation:
### Equation 1:
[tex]\[ 2x^2 + 2y^2 + 16x - 4y + 30 = 0 \][/tex]
1. Divide by 2 to simplify:
[tex]\[ x^2 + y^2 + 8x - 2y + 15 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 8x - 2y = -15 \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 8x + 16 + y^2 - 2y + 1 = -15 + 16 + 1 \][/tex]
4. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 4)^2 + (y - 1)^2 = 2 \][/tex]
Here, the radius [tex]\(r_1 = \sqrt{2}\)[/tex].
### Equation 2:
[tex]\[ x^2 + y^2 + 6x - 4y - 20 = 0 \][/tex]
1. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 6x - 4y = 20 \][/tex]
2. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 6x + 9 + y^2 - 4y + 4 = 20 + 9 + 4 \][/tex]
3. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 3)^2 + (y - 2)^2 = 33 \][/tex]
Here, the radius [tex]\(r_2 = \sqrt{33}\)[/tex].
### Equation 3:
[tex]\[ 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \][/tex]
1. Divide by 4 to simplify:
[tex]\[ x^2 + y^2 - 4x - 6y + \frac{51}{4} = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 - 4x - 6y = -\frac{51}{4} \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 - 4x + 4 + y^2 - 6y + 9 = -\frac{51}{4} + 4 + 9 \][/tex]
4. Calculate the right side:
[tex]\[ -\frac{51}{4} + 4 + 9 = -\frac{51}{4} + \frac{16}{4} + \frac{36}{4} = -\frac{51 - 16 - 36}{4} = \frac{1}{4} \][/tex]
5. Factor the perfect squares:
[tex]\[ (x - 2)^2 + (y - 3)^2 = \frac{1}{4} \][/tex]
Here, the radius [tex]\(r_3 = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex].
### Summary:
1. Radius for Equation 1: [tex]\( r_1 = \sqrt{2} \)[/tex]
2. Radius for Equation 2: [tex]\( r_2 = \sqrt{33} \)[/tex]
3. Radius for Equation 3: [tex]\( r_3 = \frac{1}{2} \)[/tex]
Smallest radius: [tex]\( \frac{1}{2} \)[/tex] (Equation 3: [tex]\( 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \)[/tex])
Largest radius: [tex]\( \sqrt{33} \)[/tex] (Equation 2: [tex]\( x^2 + y^2 + 6x - 4y - 20 = 0 \)[/tex])
The table should be completed as follows:
| Radius | Equation |
|---------------|------------------------------------------------|
| Smallest | [tex]\( 4 x^2 + 4 y^2 - 16 x - 24 y + 51 = 0 \)[/tex] |
| Largest | [tex]\( x^2 + y^2 + 6 x - 4 y - 20 = 0 \)[/tex] |
Let's complete the square for each equation:
### Equation 1:
[tex]\[ 2x^2 + 2y^2 + 16x - 4y + 30 = 0 \][/tex]
1. Divide by 2 to simplify:
[tex]\[ x^2 + y^2 + 8x - 2y + 15 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 8x - 2y = -15 \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 8x + 16 + y^2 - 2y + 1 = -15 + 16 + 1 \][/tex]
4. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 4)^2 + (y - 1)^2 = 2 \][/tex]
Here, the radius [tex]\(r_1 = \sqrt{2}\)[/tex].
### Equation 2:
[tex]\[ x^2 + y^2 + 6x - 4y - 20 = 0 \][/tex]
1. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 6x - 4y = 20 \][/tex]
2. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 6x + 9 + y^2 - 4y + 4 = 20 + 9 + 4 \][/tex]
3. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 3)^2 + (y - 2)^2 = 33 \][/tex]
Here, the radius [tex]\(r_2 = \sqrt{33}\)[/tex].
### Equation 3:
[tex]\[ 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \][/tex]
1. Divide by 4 to simplify:
[tex]\[ x^2 + y^2 - 4x - 6y + \frac{51}{4} = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 - 4x - 6y = -\frac{51}{4} \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 - 4x + 4 + y^2 - 6y + 9 = -\frac{51}{4} + 4 + 9 \][/tex]
4. Calculate the right side:
[tex]\[ -\frac{51}{4} + 4 + 9 = -\frac{51}{4} + \frac{16}{4} + \frac{36}{4} = -\frac{51 - 16 - 36}{4} = \frac{1}{4} \][/tex]
5. Factor the perfect squares:
[tex]\[ (x - 2)^2 + (y - 3)^2 = \frac{1}{4} \][/tex]
Here, the radius [tex]\(r_3 = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex].
### Summary:
1. Radius for Equation 1: [tex]\( r_1 = \sqrt{2} \)[/tex]
2. Radius for Equation 2: [tex]\( r_2 = \sqrt{33} \)[/tex]
3. Radius for Equation 3: [tex]\( r_3 = \frac{1}{2} \)[/tex]
Smallest radius: [tex]\( \frac{1}{2} \)[/tex] (Equation 3: [tex]\( 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \)[/tex])
Largest radius: [tex]\( \sqrt{33} \)[/tex] (Equation 2: [tex]\( x^2 + y^2 + 6x - 4y - 20 = 0 \)[/tex])
The table should be completed as follows:
| Radius | Equation |
|---------------|------------------------------------------------|
| Smallest | [tex]\( 4 x^2 + 4 y^2 - 16 x - 24 y + 51 = 0 \)[/tex] |
| Largest | [tex]\( x^2 + y^2 + 6 x - 4 y - 20 = 0 \)[/tex] |
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.