Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's walk through the solution step-by-step for the expression [tex]\(\left(\frac{1}{343}\right)^{\frac{2}{5}}\)[/tex].
1. Understanding the Expression:
- We are given a fraction raised to an exponent. Specifically, we have [tex]\(\frac{1}{343}\)[/tex] raised to the power of [tex]\(\frac{2}{5}\)[/tex].
2. Simplifying the Base:
- [tex]\(\frac{1}{343}\)[/tex] is a fraction where 343 is the denominator. Note that 343 can also be written as [tex]\(7^3\)[/tex]. So, [tex]\(\frac{1}{343} = \left(\frac{1}{7^3}\right)\)[/tex].
3. Rewriting using Exponents:
- Rewriting the fraction with an exponent: [tex]\(\frac{1}{7^3} = 7^{-3}\)[/tex].
4. Applying the Exponent:
- Now, we raise [tex]\(7^{-3}\)[/tex] to the power of [tex]\(\frac{2}{5}\)[/tex]:
[tex]\[ \left(7^{-3}\right)^{\frac{2}{5}} \][/tex]
5. Multiplying the Exponents:
- When raising a power to another power, we multiply the exponents:
[tex]\[ 7^{-3 \cdot \frac{2}{5}} = 7^{-\frac{6}{5}} \][/tex]
6. Interpreting the Negative Exponent:
- A negative exponent means taking the reciprocal:
[tex]\[ 7^{-\frac{6}{5}} = \frac{1}{7^{\frac{6}{5}}} \][/tex]
7. Understanding [tex]\(7^{\frac{6}{5}}\)[/tex]:
- The exponent [tex]\(\frac{6}{5}\)[/tex] can be interpreted as taking the fifth root of 7 raised to the 6th power:
[tex]\[ 7^{\frac{6}{5}} = (7^6)^{\frac{1}{5}} \][/tex]
8. Combining the Results:
- Thus, [tex]\(\frac{1}{7^{\frac{6}{5}}}\)[/tex] is the final simplified form of [tex]\(\left(\frac{1}{343}\right)^{\frac{2}{5}}\)[/tex].
After evaluating the complete expression, the numerical result is:
[tex]\[ \left(\frac{1}{343}\right)^{\frac{2}{5}} = 0.09680155905721155 \][/tex]
This value is the final answer for the given expression.
1. Understanding the Expression:
- We are given a fraction raised to an exponent. Specifically, we have [tex]\(\frac{1}{343}\)[/tex] raised to the power of [tex]\(\frac{2}{5}\)[/tex].
2. Simplifying the Base:
- [tex]\(\frac{1}{343}\)[/tex] is a fraction where 343 is the denominator. Note that 343 can also be written as [tex]\(7^3\)[/tex]. So, [tex]\(\frac{1}{343} = \left(\frac{1}{7^3}\right)\)[/tex].
3. Rewriting using Exponents:
- Rewriting the fraction with an exponent: [tex]\(\frac{1}{7^3} = 7^{-3}\)[/tex].
4. Applying the Exponent:
- Now, we raise [tex]\(7^{-3}\)[/tex] to the power of [tex]\(\frac{2}{5}\)[/tex]:
[tex]\[ \left(7^{-3}\right)^{\frac{2}{5}} \][/tex]
5. Multiplying the Exponents:
- When raising a power to another power, we multiply the exponents:
[tex]\[ 7^{-3 \cdot \frac{2}{5}} = 7^{-\frac{6}{5}} \][/tex]
6. Interpreting the Negative Exponent:
- A negative exponent means taking the reciprocal:
[tex]\[ 7^{-\frac{6}{5}} = \frac{1}{7^{\frac{6}{5}}} \][/tex]
7. Understanding [tex]\(7^{\frac{6}{5}}\)[/tex]:
- The exponent [tex]\(\frac{6}{5}\)[/tex] can be interpreted as taking the fifth root of 7 raised to the 6th power:
[tex]\[ 7^{\frac{6}{5}} = (7^6)^{\frac{1}{5}} \][/tex]
8. Combining the Results:
- Thus, [tex]\(\frac{1}{7^{\frac{6}{5}}}\)[/tex] is the final simplified form of [tex]\(\left(\frac{1}{343}\right)^{\frac{2}{5}}\)[/tex].
After evaluating the complete expression, the numerical result is:
[tex]\[ \left(\frac{1}{343}\right)^{\frac{2}{5}} = 0.09680155905721155 \][/tex]
This value is the final answer for the given expression.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.