Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the given statement [tex]\((p \rightarrow a) \leftrightarrow (\sim p \vee a)\)[/tex] is a tautology, a contradiction, or a contingency, let's go through the evaluation step-by-step.
### Step 1: Understand the Statements
First, understand the logical components:
- [tex]\( p \rightarrow a \)[/tex] (If [tex]\( p \)[/tex], then [tex]\( a \)[/tex])
- [tex]\( \sim p \)[/tex] (Not [tex]\( p \)[/tex])
- [tex]\( \sim p \vee a \)[/tex] (Not [tex]\( p \)[/tex] or [tex]\( a \)[/tex])
- [tex]\( \leftrightarrow \)[/tex] (Logical equivalence)
### Step 2: Express in Truth Table
To evaluate this, we can use a truth table, but instead, we'll logically simplify to avoid an exhaustive truth table since the evaluation shows it's a special logical form.
### Step 3: Logical Equivalence
We'll analyze the logical equivalence:
The implication [tex]\( p \rightarrow a \)[/tex] can be rewritten as [tex]\( \sim p \vee a \)[/tex] because an implication is true in the same cases when "not [tex]\( p \)[/tex]" or [tex]\( a \)[/tex] is true.
The expression [tex]\((p \rightarrow a)\)[/tex] is logically equivalent to [tex]\((\sim p \vee a)\)[/tex]. Thus, [tex]\( (p \rightarrow a) \leftrightarrow (\sim p \vee a) \)[/tex] simplifies to:
### Step 4: Simplify the Statement
- Since [tex]\( p \rightarrow a \)[/tex] is equivalent to [tex]\( \sim p \vee a \)[/tex], rewriting the original statement:
[tex]\[ (p \rightarrow a) \leftrightarrow (\sim p \vee a) \][/tex]
becomes:
[tex]\[ (\sim p \vee a) \leftrightarrow (\sim p \vee a) \][/tex]
### Step 5: Simplified Expression
- The expression [tex]\( (\sim p \vee a) \leftrightarrow (\sim p \vee a) \)[/tex] should be evaluated.
Since any statement is logically equivalent to itself, this results in a true statement universally, i.e., a tautology. This is because both sides are exactly the same, thereby always resulting in true.
### Conclusion:
Given the analysis, the statement [tex]\((p \rightarrow a) \leftrightarrow (\sim p \vee a)\)[/tex] is always true regardless of the truth values of [tex]\( p \)[/tex] and [tex]\( a \)[/tex]. Hence, it is a tautology.
Thus, the statement pattern [tex]\((p \rightarrow a) \leftrightarrow (\sim p \vee a)\)[/tex] is a Tautology.
### Step 1: Understand the Statements
First, understand the logical components:
- [tex]\( p \rightarrow a \)[/tex] (If [tex]\( p \)[/tex], then [tex]\( a \)[/tex])
- [tex]\( \sim p \)[/tex] (Not [tex]\( p \)[/tex])
- [tex]\( \sim p \vee a \)[/tex] (Not [tex]\( p \)[/tex] or [tex]\( a \)[/tex])
- [tex]\( \leftrightarrow \)[/tex] (Logical equivalence)
### Step 2: Express in Truth Table
To evaluate this, we can use a truth table, but instead, we'll logically simplify to avoid an exhaustive truth table since the evaluation shows it's a special logical form.
### Step 3: Logical Equivalence
We'll analyze the logical equivalence:
The implication [tex]\( p \rightarrow a \)[/tex] can be rewritten as [tex]\( \sim p \vee a \)[/tex] because an implication is true in the same cases when "not [tex]\( p \)[/tex]" or [tex]\( a \)[/tex] is true.
The expression [tex]\((p \rightarrow a)\)[/tex] is logically equivalent to [tex]\((\sim p \vee a)\)[/tex]. Thus, [tex]\( (p \rightarrow a) \leftrightarrow (\sim p \vee a) \)[/tex] simplifies to:
### Step 4: Simplify the Statement
- Since [tex]\( p \rightarrow a \)[/tex] is equivalent to [tex]\( \sim p \vee a \)[/tex], rewriting the original statement:
[tex]\[ (p \rightarrow a) \leftrightarrow (\sim p \vee a) \][/tex]
becomes:
[tex]\[ (\sim p \vee a) \leftrightarrow (\sim p \vee a) \][/tex]
### Step 5: Simplified Expression
- The expression [tex]\( (\sim p \vee a) \leftrightarrow (\sim p \vee a) \)[/tex] should be evaluated.
Since any statement is logically equivalent to itself, this results in a true statement universally, i.e., a tautology. This is because both sides are exactly the same, thereby always resulting in true.
### Conclusion:
Given the analysis, the statement [tex]\((p \rightarrow a) \leftrightarrow (\sim p \vee a)\)[/tex] is always true regardless of the truth values of [tex]\( p \)[/tex] and [tex]\( a \)[/tex]. Hence, it is a tautology.
Thus, the statement pattern [tex]\((p \rightarrow a) \leftrightarrow (\sim p \vee a)\)[/tex] is a Tautology.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.