Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the equation [tex]\( y = x + 3 \)[/tex] is linear or non-linear, we need to analyze its form and properties:
1. General Form of a Linear Equation:
The general form of a linear equation in two variables is given by [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
2. Identification of Components:
- In the equation [tex]\( y = x + 3 \)[/tex]:
- The term [tex]\( x \)[/tex] is the independent variable.
- The coefficient of [tex]\( x \)[/tex] is implicitly [tex]\( 1 \)[/tex], which represents the slope ([tex]\( m = 1 \)[/tex]).
- The constant term [tex]\( 3 \)[/tex] is the y-intercept ([tex]\( b = 3 \)[/tex]).
3. Verification of Linearity:
- For an equation to be linear, it must produce a straight line when graphed.
- It should contain the first power of [tex]\( x \)[/tex] (i.e., [tex]\( x^1 \)[/tex]) without any exponents higher than 1 or any products of variables (like [tex]\( x^2 \)[/tex], [tex]\( xy \)[/tex], etc.).
Given equation [tex]\( y = x + 3 \)[/tex]:
- [tex]\( x \)[/tex] is raised to the power of 1.
- There are no higher powers of [tex]\( x \)[/tex] or products of different variables.
4. Conclusion:
Since the equation [tex]\( y = x + 3 \)[/tex] is in the form [tex]\( y = mx + b \)[/tex] with [tex]\( m = 1 \)[/tex] and [tex]\( b = 3 \)[/tex], it satisfies all the conditions of being a linear equation.
Therefore, the equation [tex]\( y = x + 3 \)[/tex] is linear.
1. General Form of a Linear Equation:
The general form of a linear equation in two variables is given by [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
2. Identification of Components:
- In the equation [tex]\( y = x + 3 \)[/tex]:
- The term [tex]\( x \)[/tex] is the independent variable.
- The coefficient of [tex]\( x \)[/tex] is implicitly [tex]\( 1 \)[/tex], which represents the slope ([tex]\( m = 1 \)[/tex]).
- The constant term [tex]\( 3 \)[/tex] is the y-intercept ([tex]\( b = 3 \)[/tex]).
3. Verification of Linearity:
- For an equation to be linear, it must produce a straight line when graphed.
- It should contain the first power of [tex]\( x \)[/tex] (i.e., [tex]\( x^1 \)[/tex]) without any exponents higher than 1 or any products of variables (like [tex]\( x^2 \)[/tex], [tex]\( xy \)[/tex], etc.).
Given equation [tex]\( y = x + 3 \)[/tex]:
- [tex]\( x \)[/tex] is raised to the power of 1.
- There are no higher powers of [tex]\( x \)[/tex] or products of different variables.
4. Conclusion:
Since the equation [tex]\( y = x + 3 \)[/tex] is in the form [tex]\( y = mx + b \)[/tex] with [tex]\( m = 1 \)[/tex] and [tex]\( b = 3 \)[/tex], it satisfies all the conditions of being a linear equation.
Therefore, the equation [tex]\( y = x + 3 \)[/tex] is linear.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.