At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine whether the equation [tex]\( y = x + 3 \)[/tex] is linear or non-linear, we need to analyze its form and properties:
1. General Form of a Linear Equation:
The general form of a linear equation in two variables is given by [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
2. Identification of Components:
- In the equation [tex]\( y = x + 3 \)[/tex]:
- The term [tex]\( x \)[/tex] is the independent variable.
- The coefficient of [tex]\( x \)[/tex] is implicitly [tex]\( 1 \)[/tex], which represents the slope ([tex]\( m = 1 \)[/tex]).
- The constant term [tex]\( 3 \)[/tex] is the y-intercept ([tex]\( b = 3 \)[/tex]).
3. Verification of Linearity:
- For an equation to be linear, it must produce a straight line when graphed.
- It should contain the first power of [tex]\( x \)[/tex] (i.e., [tex]\( x^1 \)[/tex]) without any exponents higher than 1 or any products of variables (like [tex]\( x^2 \)[/tex], [tex]\( xy \)[/tex], etc.).
Given equation [tex]\( y = x + 3 \)[/tex]:
- [tex]\( x \)[/tex] is raised to the power of 1.
- There are no higher powers of [tex]\( x \)[/tex] or products of different variables.
4. Conclusion:
Since the equation [tex]\( y = x + 3 \)[/tex] is in the form [tex]\( y = mx + b \)[/tex] with [tex]\( m = 1 \)[/tex] and [tex]\( b = 3 \)[/tex], it satisfies all the conditions of being a linear equation.
Therefore, the equation [tex]\( y = x + 3 \)[/tex] is linear.
1. General Form of a Linear Equation:
The general form of a linear equation in two variables is given by [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
2. Identification of Components:
- In the equation [tex]\( y = x + 3 \)[/tex]:
- The term [tex]\( x \)[/tex] is the independent variable.
- The coefficient of [tex]\( x \)[/tex] is implicitly [tex]\( 1 \)[/tex], which represents the slope ([tex]\( m = 1 \)[/tex]).
- The constant term [tex]\( 3 \)[/tex] is the y-intercept ([tex]\( b = 3 \)[/tex]).
3. Verification of Linearity:
- For an equation to be linear, it must produce a straight line when graphed.
- It should contain the first power of [tex]\( x \)[/tex] (i.e., [tex]\( x^1 \)[/tex]) without any exponents higher than 1 or any products of variables (like [tex]\( x^2 \)[/tex], [tex]\( xy \)[/tex], etc.).
Given equation [tex]\( y = x + 3 \)[/tex]:
- [tex]\( x \)[/tex] is raised to the power of 1.
- There are no higher powers of [tex]\( x \)[/tex] or products of different variables.
4. Conclusion:
Since the equation [tex]\( y = x + 3 \)[/tex] is in the form [tex]\( y = mx + b \)[/tex] with [tex]\( m = 1 \)[/tex] and [tex]\( b = 3 \)[/tex], it satisfies all the conditions of being a linear equation.
Therefore, the equation [tex]\( y = x + 3 \)[/tex] is linear.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.