Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! To simplify the given expression step-by-step, let's analyze and break it down:
a) [tex]\(\frac{X^8 \cdot X^{-3}}{X^2 \cdot X^2}\)[/tex]
1. Simplify the Exponents in the Numerator:
Let's start with the numerator [tex]\(X^8 \cdot X^{-3}\)[/tex].
- When multiplying powers with the same base, you add the exponents: [tex]\(X^8 \cdot X^{-3} = X^{8 + (-3)} = X^5\)[/tex].
2. Simplify the Exponents in the Denominator:
Now, let's simplify the denominator [tex]\(X^2 \cdot X^2\)[/tex].
- Similarly, when multiplying powers with the same base, you add the exponents: [tex]\(X^2 \cdot X^2 = X^{2+2} = X^4\)[/tex].
3. Combine the Simplified Numerator and Denominator:
Now, we have the simplified expression:
[tex]\[ \frac{X^5}{X^4} \][/tex]
4. Subtract the Exponents:
When dividing powers with the same base, you subtract the exponents in the denominator from the exponents in the numerator:
[tex]\[ \frac{X^5}{X^4} = X^{5-4} = X^1 = X \][/tex]
Therefore, the simplified form of the given expression is [tex]\(X\)[/tex].
a) [tex]\(\frac{X^8 \cdot X^{-3}}{X^2 \cdot X^2}\)[/tex]
1. Simplify the Exponents in the Numerator:
Let's start with the numerator [tex]\(X^8 \cdot X^{-3}\)[/tex].
- When multiplying powers with the same base, you add the exponents: [tex]\(X^8 \cdot X^{-3} = X^{8 + (-3)} = X^5\)[/tex].
2. Simplify the Exponents in the Denominator:
Now, let's simplify the denominator [tex]\(X^2 \cdot X^2\)[/tex].
- Similarly, when multiplying powers with the same base, you add the exponents: [tex]\(X^2 \cdot X^2 = X^{2+2} = X^4\)[/tex].
3. Combine the Simplified Numerator and Denominator:
Now, we have the simplified expression:
[tex]\[ \frac{X^5}{X^4} \][/tex]
4. Subtract the Exponents:
When dividing powers with the same base, you subtract the exponents in the denominator from the exponents in the numerator:
[tex]\[ \frac{X^5}{X^4} = X^{5-4} = X^1 = X \][/tex]
Therefore, the simplified form of the given expression is [tex]\(X\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.