Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Simplify:

a) [tex]\frac{X^8 \times X^{-3}}{X^2 \times X^2}[/tex]


Sagot :

Sure! To simplify the given expression step-by-step, let's analyze and break it down:

a) [tex]\(\frac{X^8 \cdot X^{-3}}{X^2 \cdot X^2}\)[/tex]

1. Simplify the Exponents in the Numerator:

Let's start with the numerator [tex]\(X^8 \cdot X^{-3}\)[/tex].
- When multiplying powers with the same base, you add the exponents: [tex]\(X^8 \cdot X^{-3} = X^{8 + (-3)} = X^5\)[/tex].

2. Simplify the Exponents in the Denominator:

Now, let's simplify the denominator [tex]\(X^2 \cdot X^2\)[/tex].
- Similarly, when multiplying powers with the same base, you add the exponents: [tex]\(X^2 \cdot X^2 = X^{2+2} = X^4\)[/tex].

3. Combine the Simplified Numerator and Denominator:

Now, we have the simplified expression:
[tex]\[ \frac{X^5}{X^4} \][/tex]

4. Subtract the Exponents:

When dividing powers with the same base, you subtract the exponents in the denominator from the exponents in the numerator:
[tex]\[ \frac{X^5}{X^4} = X^{5-4} = X^1 = X \][/tex]

Therefore, the simplified form of the given expression is [tex]\(X\)[/tex].