Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine whether the equation [tex]\( y = x^2 + 2 \)[/tex] is linear or non-linear, let's analyze its structure and properties.
1. Understanding Linear Equations:
- A linear equation in two variables (e.g., [tex]\( x \)[/tex] and [tex]\( y \)[/tex]) can be written in the general form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
- The key characteristic of a linear equation is that it forms a straight line when graphed on a coordinate plane. Additionally, in a linear equation, the highest power of the variable [tex]\( x \)[/tex] is 1.
2. Analyzing the Given Equation [tex]\( y = x^2 + 2 \)[/tex]:
- Observe that the equation includes a term [tex]\( x^2 \)[/tex], which means that the variable [tex]\( x \)[/tex] is raised to the power of 2.
- The presence of [tex]\( x^2 \)[/tex] indicates that the equation involves a quadratic term rather than a linear one.
3. Conclusion:
- Since the equation contains a quadratic term ([tex]\( x^2 \)[/tex]), it does not fit the form of [tex]\( y = mx + b \)[/tex], and thus, it is not a linear equation.
- Instead, the equation [tex]\( y = x^2 + 2 \)[/tex] describes a parabola when graphed, which is a characteristic of non-linear equations.
Therefore, the equation [tex]\( y = x^2 + 2 \)[/tex] is non-linear.
1. Understanding Linear Equations:
- A linear equation in two variables (e.g., [tex]\( x \)[/tex] and [tex]\( y \)[/tex]) can be written in the general form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
- The key characteristic of a linear equation is that it forms a straight line when graphed on a coordinate plane. Additionally, in a linear equation, the highest power of the variable [tex]\( x \)[/tex] is 1.
2. Analyzing the Given Equation [tex]\( y = x^2 + 2 \)[/tex]:
- Observe that the equation includes a term [tex]\( x^2 \)[/tex], which means that the variable [tex]\( x \)[/tex] is raised to the power of 2.
- The presence of [tex]\( x^2 \)[/tex] indicates that the equation involves a quadratic term rather than a linear one.
3. Conclusion:
- Since the equation contains a quadratic term ([tex]\( x^2 \)[/tex]), it does not fit the form of [tex]\( y = mx + b \)[/tex], and thus, it is not a linear equation.
- Instead, the equation [tex]\( y = x^2 + 2 \)[/tex] describes a parabola when graphed, which is a characteristic of non-linear equations.
Therefore, the equation [tex]\( y = x^2 + 2 \)[/tex] is non-linear.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.