Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the equation [tex]\( y = x^2 + 2 \)[/tex] is linear or non-linear, let's analyze its structure and properties.
1. Understanding Linear Equations:
- A linear equation in two variables (e.g., [tex]\( x \)[/tex] and [tex]\( y \)[/tex]) can be written in the general form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
- The key characteristic of a linear equation is that it forms a straight line when graphed on a coordinate plane. Additionally, in a linear equation, the highest power of the variable [tex]\( x \)[/tex] is 1.
2. Analyzing the Given Equation [tex]\( y = x^2 + 2 \)[/tex]:
- Observe that the equation includes a term [tex]\( x^2 \)[/tex], which means that the variable [tex]\( x \)[/tex] is raised to the power of 2.
- The presence of [tex]\( x^2 \)[/tex] indicates that the equation involves a quadratic term rather than a linear one.
3. Conclusion:
- Since the equation contains a quadratic term ([tex]\( x^2 \)[/tex]), it does not fit the form of [tex]\( y = mx + b \)[/tex], and thus, it is not a linear equation.
- Instead, the equation [tex]\( y = x^2 + 2 \)[/tex] describes a parabola when graphed, which is a characteristic of non-linear equations.
Therefore, the equation [tex]\( y = x^2 + 2 \)[/tex] is non-linear.
1. Understanding Linear Equations:
- A linear equation in two variables (e.g., [tex]\( x \)[/tex] and [tex]\( y \)[/tex]) can be written in the general form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the dependent variable.
- [tex]\( x \)[/tex] is the independent variable.
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
- The key characteristic of a linear equation is that it forms a straight line when graphed on a coordinate plane. Additionally, in a linear equation, the highest power of the variable [tex]\( x \)[/tex] is 1.
2. Analyzing the Given Equation [tex]\( y = x^2 + 2 \)[/tex]:
- Observe that the equation includes a term [tex]\( x^2 \)[/tex], which means that the variable [tex]\( x \)[/tex] is raised to the power of 2.
- The presence of [tex]\( x^2 \)[/tex] indicates that the equation involves a quadratic term rather than a linear one.
3. Conclusion:
- Since the equation contains a quadratic term ([tex]\( x^2 \)[/tex]), it does not fit the form of [tex]\( y = mx + b \)[/tex], and thus, it is not a linear equation.
- Instead, the equation [tex]\( y = x^2 + 2 \)[/tex] describes a parabola when graphed, which is a characteristic of non-linear equations.
Therefore, the equation [tex]\( y = x^2 + 2 \)[/tex] is non-linear.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.