At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly. Let me guide you step-by-step through this problem:
1. Understanding the Growth Rates:
- Town X's population increases by 8% per year.
- Town Y's population increases by 12% per year.
2. Establish the Time Frame:
- We are examining the change from the beginning of 2010 to the end of 2012, which is 3 years.
3. Express the Growth Mathematically:
- The formula for population growth over a number of years with a constant rate is:
[tex]\[ P_{\text{final}} = P_{\text{initial}} \times (1 + \text{rate})^{\text{number of years}} \][/tex]
4. Equating Final Populations:
- Let [tex]\( P_X \)[/tex] be the population of Town X at the beginning of 2010.
- Let [tex]\( P_Y \)[/tex] be the population of Town Y at the beginning of 2010.
- At the end of 2012, the populations are equal:
[tex]\[ P_X \times (1 + 0.08)^3 = P_Y \times (1 + 0.12)^3 \][/tex]
5. Calculate the Growth Factors:
- For Town X over 3 years:
[tex]\[ \text{Growth Factor for X} = (1 + 0.08)^3 \approx 1.259712 \][/tex]
- For Town Y over 3 years:
[tex]\[ \text{Growth Factor for Y} = (1 + 0.12)^3 \approx 1.404928 \][/tex]
6. Establish the Relationship Between Initial Populations:
- Since the final populations are equal, the scaled relationship is:
[tex]\[ P_X \times 1.259712 = P_Y \times 1.404928 \][/tex]
- Rearrange to find the ratio:
[tex]\[ \frac{P_X}{P_Y} = \frac{1.404928}{1.259712} \approx 1.115277 \][/tex]
Therefore, the ratio of the population of Town X to the population of Town Y at the beginning of 2010 is approximately [tex]\( 1.115277 \)[/tex]. This means that the initial population of Town X was about 11.53% greater than that of Town Y at the beginning of 2010.
1. Understanding the Growth Rates:
- Town X's population increases by 8% per year.
- Town Y's population increases by 12% per year.
2. Establish the Time Frame:
- We are examining the change from the beginning of 2010 to the end of 2012, which is 3 years.
3. Express the Growth Mathematically:
- The formula for population growth over a number of years with a constant rate is:
[tex]\[ P_{\text{final}} = P_{\text{initial}} \times (1 + \text{rate})^{\text{number of years}} \][/tex]
4. Equating Final Populations:
- Let [tex]\( P_X \)[/tex] be the population of Town X at the beginning of 2010.
- Let [tex]\( P_Y \)[/tex] be the population of Town Y at the beginning of 2010.
- At the end of 2012, the populations are equal:
[tex]\[ P_X \times (1 + 0.08)^3 = P_Y \times (1 + 0.12)^3 \][/tex]
5. Calculate the Growth Factors:
- For Town X over 3 years:
[tex]\[ \text{Growth Factor for X} = (1 + 0.08)^3 \approx 1.259712 \][/tex]
- For Town Y over 3 years:
[tex]\[ \text{Growth Factor for Y} = (1 + 0.12)^3 \approx 1.404928 \][/tex]
6. Establish the Relationship Between Initial Populations:
- Since the final populations are equal, the scaled relationship is:
[tex]\[ P_X \times 1.259712 = P_Y \times 1.404928 \][/tex]
- Rearrange to find the ratio:
[tex]\[ \frac{P_X}{P_Y} = \frac{1.404928}{1.259712} \approx 1.115277 \][/tex]
Therefore, the ratio of the population of Town X to the population of Town Y at the beginning of 2010 is approximately [tex]\( 1.115277 \)[/tex]. This means that the initial population of Town X was about 11.53% greater than that of Town Y at the beginning of 2010.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.