Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To rewrite the expression [tex]\(3 y^{-\frac{4}{3}} \cdot 2 \sqrt[3]{y}\)[/tex] in the form [tex]\(k \cdot y^n\)[/tex], we start by breaking down and simplifying each component of the expression.
1. Rewrite each component in terms of an exponent:
The expression [tex]\(3 y^{-\frac{4}{3}}\)[/tex] is already in exponential form.
The term [tex]\(2 \sqrt[3]{y}\)[/tex] can be rewritten using exponents as [tex]\(2 y^{\frac{1}{3}}\)[/tex].
2. Combine the coefficients:
Multiply the numerical coefficients together:
[tex]\[ 3 \cdot 2 = 6 \][/tex]
3. Combine the exponents:
Add the exponents for [tex]\(y\)[/tex]:
[tex]\[ y^{-\frac{4}{3}} \cdot y^{\frac{1}{3}} \][/tex]
Recall that when multiplying terms with the same base, the exponents are added:
[tex]\[ -\frac{4}{3} + \frac{1}{3} = -\frac{4}{3} + \frac{1}{3} = -\frac{3}{3} = -1 \][/tex]
4. Simplified expression:
Putting it all together, we get:
[tex]\[ 3 y^{-\frac{4}{3}} \cdot 2 y^{\frac{1}{3}} = 6 y^{-1} \][/tex]
In another form, [tex]\(y^{-1}\)[/tex] is the same as [tex]\(\frac{1}{y}\)[/tex].
So, the expression can be rewritten as:
[tex]\[ 6 y^{-1} \][/tex]
or equivalently,
[tex]\[ \frac{6}{y} \][/tex]
1. Rewrite each component in terms of an exponent:
The expression [tex]\(3 y^{-\frac{4}{3}}\)[/tex] is already in exponential form.
The term [tex]\(2 \sqrt[3]{y}\)[/tex] can be rewritten using exponents as [tex]\(2 y^{\frac{1}{3}}\)[/tex].
2. Combine the coefficients:
Multiply the numerical coefficients together:
[tex]\[ 3 \cdot 2 = 6 \][/tex]
3. Combine the exponents:
Add the exponents for [tex]\(y\)[/tex]:
[tex]\[ y^{-\frac{4}{3}} \cdot y^{\frac{1}{3}} \][/tex]
Recall that when multiplying terms with the same base, the exponents are added:
[tex]\[ -\frac{4}{3} + \frac{1}{3} = -\frac{4}{3} + \frac{1}{3} = -\frac{3}{3} = -1 \][/tex]
4. Simplified expression:
Putting it all together, we get:
[tex]\[ 3 y^{-\frac{4}{3}} \cdot 2 y^{\frac{1}{3}} = 6 y^{-1} \][/tex]
In another form, [tex]\(y^{-1}\)[/tex] is the same as [tex]\(\frac{1}{y}\)[/tex].
So, the expression can be rewritten as:
[tex]\[ 6 y^{-1} \][/tex]
or equivalently,
[tex]\[ \frac{6}{y} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.