Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which exponential expression is equivalent to [tex]\((\sqrt[3]{t})^2\)[/tex], we need to simplify it step-by-step.
1. Rewrite the Radicals as Exponents:
The expression [tex]\(\sqrt[3]{t}\)[/tex] can be rewritten in exponential form. By definition, the cube root of [tex]\(t\)[/tex] is [tex]\(t\)[/tex] raised to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \sqrt[3]{t} = t^{\frac{1}{3}} \][/tex]
2. Apply the Power Rule for Exponents:
We need to raise this expression to the power of 2:
[tex]\[ (\sqrt[3]{t})^2 = \left(t^{\frac{1}{3}}\right)^2 \][/tex]
3. Simplify the Exponent:
When raising a power to another power, you multiply the exponents. Therefore, we multiply [tex]\(\frac{1}{3}\)[/tex] by 2:
[tex]\[ \left(t^{\frac{1}{3}}\right)^2 = t^{\frac{1}{3} \cdot 2} = t^{\frac{2}{3}} \][/tex]
The equivalent expression is [tex]\(t^{\frac{2}{3}}\)[/tex], which corresponds to option (B).
Thus, the correct answer is:
[tex]\[ \boxed{t^{\frac{2}{3}}} \][/tex]
Therefore, option (B) is the correct choice.
1. Rewrite the Radicals as Exponents:
The expression [tex]\(\sqrt[3]{t}\)[/tex] can be rewritten in exponential form. By definition, the cube root of [tex]\(t\)[/tex] is [tex]\(t\)[/tex] raised to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \sqrt[3]{t} = t^{\frac{1}{3}} \][/tex]
2. Apply the Power Rule for Exponents:
We need to raise this expression to the power of 2:
[tex]\[ (\sqrt[3]{t})^2 = \left(t^{\frac{1}{3}}\right)^2 \][/tex]
3. Simplify the Exponent:
When raising a power to another power, you multiply the exponents. Therefore, we multiply [tex]\(\frac{1}{3}\)[/tex] by 2:
[tex]\[ \left(t^{\frac{1}{3}}\right)^2 = t^{\frac{1}{3} \cdot 2} = t^{\frac{2}{3}} \][/tex]
The equivalent expression is [tex]\(t^{\frac{2}{3}}\)[/tex], which corresponds to option (B).
Thus, the correct answer is:
[tex]\[ \boxed{t^{\frac{2}{3}}} \][/tex]
Therefore, option (B) is the correct choice.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.