Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Which exponential expression is equivalent to [tex](\sqrt[3]{t})^2[/tex]?

Choose 1 answer:
A. [tex]\frac{t^2}{t^3}[/tex]
B. [tex]t^{\frac{2}{3}}[/tex]
C. [tex]t^{\frac{3}{2}}[/tex]
D. [tex]\frac{t^3}{t^2}[/tex]


Sagot :

To determine which exponential expression is equivalent to [tex]\((\sqrt[3]{t})^2\)[/tex], we need to simplify it step-by-step.

1. Rewrite the Radicals as Exponents:
The expression [tex]\(\sqrt[3]{t}\)[/tex] can be rewritten in exponential form. By definition, the cube root of [tex]\(t\)[/tex] is [tex]\(t\)[/tex] raised to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \sqrt[3]{t} = t^{\frac{1}{3}} \][/tex]

2. Apply the Power Rule for Exponents:
We need to raise this expression to the power of 2:
[tex]\[ (\sqrt[3]{t})^2 = \left(t^{\frac{1}{3}}\right)^2 \][/tex]

3. Simplify the Exponent:
When raising a power to another power, you multiply the exponents. Therefore, we multiply [tex]\(\frac{1}{3}\)[/tex] by 2:
[tex]\[ \left(t^{\frac{1}{3}}\right)^2 = t^{\frac{1}{3} \cdot 2} = t^{\frac{2}{3}} \][/tex]

The equivalent expression is [tex]\(t^{\frac{2}{3}}\)[/tex], which corresponds to option (B).

Thus, the correct answer is:
[tex]\[ \boxed{t^{\frac{2}{3}}} \][/tex]
Therefore, option (B) is the correct choice.