Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the expression [tex]\( -\frac{3}{2} \pi \sqrt{2} \)[/tex], we follow several steps to understand each component and compute the final result.
1. Understand the components:
- The fraction [tex]\(-\frac{3}{2}\)[/tex] represents a single coefficient.
- [tex]\(\pi\)[/tex] is a constant representing the ratio of the circumference of a circle to its diameter, approximately equal to [tex]\(3.141592653589793\)[/tex].
- [tex]\(\sqrt{2}\)[/tex] is the square root of 2, which is approximately [tex]\(1.4142135623730951\)[/tex].
2. Break down the multiplication:
- First, we multiply [tex]\(\pi\)[/tex] and [tex]\(\sqrt{2}\)[/tex].
- Then, we multiply the result with the coefficient [tex]\(-\frac{3}{2}\)[/tex].
3. Multiply [tex]\(\pi\)[/tex] with [tex]\(\sqrt{2}\)[/tex]:
- Given [tex]\(\pi \approx 3.141592653589793\)[/tex] and [tex]\(\sqrt{2} \approx 1.4142135623730951\)[/tex],
- Multiplying these numbers gives [tex]\( 3.141592653589793 \times 1.4142135623730951 \approx 4.442882938158366 \)[/tex].
4. Include the coefficient [tex]\(-\frac{3}{2}\)[/tex]:
- Now, multiply this intermediate result by [tex]\(-\frac{3}{2}\)[/tex], which is [tex]\(-1.5\)[/tex]:
- [tex]\(-1.5 \times 4.442882938158366 \approx -6.664324407237549\)[/tex].
5. Final Result:
- The final value of the expression [tex]\( -\frac{3}{2} \pi \sqrt{2} \)[/tex] is approximately [tex]\(-6.664324407237549\)[/tex].
So, the step-by-step simplification shows that:
[tex]\[ -\frac{3}{2} \pi \sqrt{2} \approx -6.664324407237549 \][/tex]
1. Understand the components:
- The fraction [tex]\(-\frac{3}{2}\)[/tex] represents a single coefficient.
- [tex]\(\pi\)[/tex] is a constant representing the ratio of the circumference of a circle to its diameter, approximately equal to [tex]\(3.141592653589793\)[/tex].
- [tex]\(\sqrt{2}\)[/tex] is the square root of 2, which is approximately [tex]\(1.4142135623730951\)[/tex].
2. Break down the multiplication:
- First, we multiply [tex]\(\pi\)[/tex] and [tex]\(\sqrt{2}\)[/tex].
- Then, we multiply the result with the coefficient [tex]\(-\frac{3}{2}\)[/tex].
3. Multiply [tex]\(\pi\)[/tex] with [tex]\(\sqrt{2}\)[/tex]:
- Given [tex]\(\pi \approx 3.141592653589793\)[/tex] and [tex]\(\sqrt{2} \approx 1.4142135623730951\)[/tex],
- Multiplying these numbers gives [tex]\( 3.141592653589793 \times 1.4142135623730951 \approx 4.442882938158366 \)[/tex].
4. Include the coefficient [tex]\(-\frac{3}{2}\)[/tex]:
- Now, multiply this intermediate result by [tex]\(-\frac{3}{2}\)[/tex], which is [tex]\(-1.5\)[/tex]:
- [tex]\(-1.5 \times 4.442882938158366 \approx -6.664324407237549\)[/tex].
5. Final Result:
- The final value of the expression [tex]\( -\frac{3}{2} \pi \sqrt{2} \)[/tex] is approximately [tex]\(-6.664324407237549\)[/tex].
So, the step-by-step simplification shows that:
[tex]\[ -\frac{3}{2} \pi \sqrt{2} \approx -6.664324407237549 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.