Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the expression [tex]\(5^{-3}\)[/tex], let's break it down step-by-step using the properties of exponents.
### Step 1: Understand the Negative Exponent Rule
One important property of exponents is the negative exponent rule. This rule states that for any nonzero number [tex]\(a\)[/tex] and positive integer [tex]\(n\)[/tex]:
[tex]\[ a^{-n} = \frac{1}{a^n} \][/tex]
### Step 2: Apply the Negative Exponent Rule
In our case, [tex]\(a = 5\)[/tex] and [tex]\(n = 3\)[/tex]. So, applying the negative exponent rule to [tex]\(5^{-3}\)[/tex]:
[tex]\[ 5^{-3} = \frac{1}{5^3} \][/tex]
### Step 3: Compute [tex]\(5^3\)[/tex]
Now, we need to compute the value of [tex]\(5^3\)[/tex]:
[tex]\[ 5^3 = 5 \times 5 \times 5 = 125 \][/tex]
### Step 4: Substitute and Simplify
Substituting the value of [tex]\(5^3\)[/tex] back into the fraction, we get:
[tex]\[ \frac{1}{5^3} = \frac{1}{125} \][/tex]
So, the simplified expression for [tex]\(5^{-3}\)[/tex] is [tex]\(\frac{1}{125}\)[/tex].
### Verification of Numerical Value
Let’s verify by converting [tex]\(\frac{1}{125}\)[/tex] into a decimal:
[tex]\(\frac{1}{125} = 0.008\)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{5^3}} \][/tex]
This corresponds to option A.
### Step 1: Understand the Negative Exponent Rule
One important property of exponents is the negative exponent rule. This rule states that for any nonzero number [tex]\(a\)[/tex] and positive integer [tex]\(n\)[/tex]:
[tex]\[ a^{-n} = \frac{1}{a^n} \][/tex]
### Step 2: Apply the Negative Exponent Rule
In our case, [tex]\(a = 5\)[/tex] and [tex]\(n = 3\)[/tex]. So, applying the negative exponent rule to [tex]\(5^{-3}\)[/tex]:
[tex]\[ 5^{-3} = \frac{1}{5^3} \][/tex]
### Step 3: Compute [tex]\(5^3\)[/tex]
Now, we need to compute the value of [tex]\(5^3\)[/tex]:
[tex]\[ 5^3 = 5 \times 5 \times 5 = 125 \][/tex]
### Step 4: Substitute and Simplify
Substituting the value of [tex]\(5^3\)[/tex] back into the fraction, we get:
[tex]\[ \frac{1}{5^3} = \frac{1}{125} \][/tex]
So, the simplified expression for [tex]\(5^{-3}\)[/tex] is [tex]\(\frac{1}{125}\)[/tex].
### Verification of Numerical Value
Let’s verify by converting [tex]\(\frac{1}{125}\)[/tex] into a decimal:
[tex]\(\frac{1}{125} = 0.008\)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{5^3}} \][/tex]
This corresponds to option A.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.