Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the value of [tex]\(\sqrt[4]{81 y^{12}}\)[/tex], we need to simplify the given expression step-by-step.
1. Understand the components of the expression:
- [tex]\(81 y^{12}\)[/tex] is the expression inside the fourth root.
- First, we will separate the constants and the variable parts: [tex]\(81\)[/tex] and [tex]\(y^{12}\)[/tex].
2. Deal with the constant term (81):
- We know that [tex]\(81 = 3^4\)[/tex].
- Taking the fourth root of [tex]\(81\)[/tex]:
[tex]\[ \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \][/tex]
3. Deal with the variable term ([tex]\(y^{12}\)[/tex]):
- We can use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- So, [tex]\(\sqrt[4]{y^{12}}\)[/tex] is equivalent to:
[tex]\[ y^{12/4} = y^3 \][/tex]
4. Combine the results:
- Multiply the results from the constant term and the variable term:
[tex]\[ \sqrt[4]{81 y^{12}} = \sqrt[4]{81} \cdot \sqrt[4]{y^{12}} = 3 \cdot y^3 = 3y^3 \][/tex]
Thus, the final simplified result is:
[tex]\[ 3 y^3 \][/tex]
Hence, the correct answer is:
C. [tex]\(3 y^3\)[/tex]
1. Understand the components of the expression:
- [tex]\(81 y^{12}\)[/tex] is the expression inside the fourth root.
- First, we will separate the constants and the variable parts: [tex]\(81\)[/tex] and [tex]\(y^{12}\)[/tex].
2. Deal with the constant term (81):
- We know that [tex]\(81 = 3^4\)[/tex].
- Taking the fourth root of [tex]\(81\)[/tex]:
[tex]\[ \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \][/tex]
3. Deal with the variable term ([tex]\(y^{12}\)[/tex]):
- We can use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- So, [tex]\(\sqrt[4]{y^{12}}\)[/tex] is equivalent to:
[tex]\[ y^{12/4} = y^3 \][/tex]
4. Combine the results:
- Multiply the results from the constant term and the variable term:
[tex]\[ \sqrt[4]{81 y^{12}} = \sqrt[4]{81} \cdot \sqrt[4]{y^{12}} = 3 \cdot y^3 = 3y^3 \][/tex]
Thus, the final simplified result is:
[tex]\[ 3 y^3 \][/tex]
Hence, the correct answer is:
C. [tex]\(3 y^3\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.