Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of [tex]\(\sqrt[4]{81 y^{12}}\)[/tex], we need to simplify the given expression step-by-step.
1. Understand the components of the expression:
- [tex]\(81 y^{12}\)[/tex] is the expression inside the fourth root.
- First, we will separate the constants and the variable parts: [tex]\(81\)[/tex] and [tex]\(y^{12}\)[/tex].
2. Deal with the constant term (81):
- We know that [tex]\(81 = 3^4\)[/tex].
- Taking the fourth root of [tex]\(81\)[/tex]:
[tex]\[ \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \][/tex]
3. Deal with the variable term ([tex]\(y^{12}\)[/tex]):
- We can use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- So, [tex]\(\sqrt[4]{y^{12}}\)[/tex] is equivalent to:
[tex]\[ y^{12/4} = y^3 \][/tex]
4. Combine the results:
- Multiply the results from the constant term and the variable term:
[tex]\[ \sqrt[4]{81 y^{12}} = \sqrt[4]{81} \cdot \sqrt[4]{y^{12}} = 3 \cdot y^3 = 3y^3 \][/tex]
Thus, the final simplified result is:
[tex]\[ 3 y^3 \][/tex]
Hence, the correct answer is:
C. [tex]\(3 y^3\)[/tex]
1. Understand the components of the expression:
- [tex]\(81 y^{12}\)[/tex] is the expression inside the fourth root.
- First, we will separate the constants and the variable parts: [tex]\(81\)[/tex] and [tex]\(y^{12}\)[/tex].
2. Deal with the constant term (81):
- We know that [tex]\(81 = 3^4\)[/tex].
- Taking the fourth root of [tex]\(81\)[/tex]:
[tex]\[ \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \][/tex]
3. Deal with the variable term ([tex]\(y^{12}\)[/tex]):
- We can use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- So, [tex]\(\sqrt[4]{y^{12}}\)[/tex] is equivalent to:
[tex]\[ y^{12/4} = y^3 \][/tex]
4. Combine the results:
- Multiply the results from the constant term and the variable term:
[tex]\[ \sqrt[4]{81 y^{12}} = \sqrt[4]{81} \cdot \sqrt[4]{y^{12}} = 3 \cdot y^3 = 3y^3 \][/tex]
Thus, the final simplified result is:
[tex]\[ 3 y^3 \][/tex]
Hence, the correct answer is:
C. [tex]\(3 y^3\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.