Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the probability density function (pdf) of [tex]\( U = Y_1 - Y_2 \)[/tex] and subsequently its expected value [tex]\( E(U) \)[/tex], we'll proceed through several steps.
### Step 1: Range of [tex]\( U \)[/tex]
First, we need to determine the range of [tex]\( U \)[/tex]. Given that [tex]\( 0 \leq Y_2 \leq Y_1 \leq 1 \)[/tex]:
[tex]\[ U = Y_1 - Y_2 \][/tex]
Given [tex]\( Y_1 \)[/tex] ranges from 0 to 1 and [tex]\( Y_2 \)[/tex] from 0 to [tex]\( Y_1 \)[/tex]:
[tex]\[ 0 \leq U \leq 1 \][/tex]
### Step 2: Determine the Joint Pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex]
The joint pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex] is:
[tex]\[ f(y_1, y_2) = \left\{ \begin{array}{ll} 3 y_1 & \text{if } 0 \leq y_2 \leq y_1 \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 3: Transformation to New Variable [tex]\( U \)[/tex]
We need to express [tex]\( f_{U}(u) \)[/tex] in terms of the new variable [tex]\( U \)[/tex].
Define [tex]\( U = Y_1 - Y_2 \)[/tex]. Thus, [tex]\( Y_2 = Y_1 - U \)[/tex].
For a given [tex]\( u \)[/tex], [tex]\( y_2 = y_1 - u \)[/tex]. Consequently, [tex]\( y_1 \)[/tex] ranges from [tex]\( u \)[/tex] to 1, since [tex]\( y_1 ≥ y_2 \)[/tex]:
[tex]\[ \int_u^1 f(y_1, y_1 - u) dy_1 \][/tex]
### Step 4: Calculate the Pdf of [tex]\( U \)[/tex]
Inserting [tex]\( y_2 = y_1 - u \)[/tex] into [tex]\( f(y_1, y_2) \)[/tex]:
[tex]\[ f(y_1, y_1 - u) = 3 y_1 \][/tex]
So,
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 \][/tex]
### Step 5: Solve the Integral
Performing the integration:
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 = \left[ \frac{3 y_1^2}{2} \right]_u^1 = \frac{3}{2} \left(1^2 - u^2\right) = \frac{3}{2} (1 - u^2) \][/tex]
Hence the probability density function of [tex]\( U \)[/tex] is:
[tex]\[ f_U(u) = \left\{ \begin{array}{ll} \frac{3}{2} (1 - u^2) & \text{if } 0 \leq u \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 6: Expected Value [tex]\( E(U) \)[/tex]
Finally, let's calculate [tex]\( E(U) \)[/tex]:
[tex]\[ E(U) = \int_0^1 u f_U(u) du = \int_0^1 u \frac{3}{2} (1 - u^2) du \][/tex]
Simplifying the integral:
[tex]\[ E(U) = \frac{3}{2} \int_0^1 \left( u - u^3 \right) du = \frac{3}{2} \left( \int_0^1 u du - \int_0^1 u^3 du \right) \][/tex]
Evaluating the integrals:
[tex]\[ \int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2} \][/tex]
[tex]\[ \int_0^1 u^3 du = \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{4} \][/tex]
Combining these:
[tex]\[ E(U) = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8} \][/tex]
Thus, the expected value [tex]\( E(U) \)[/tex] is [tex]\( \frac{3}{8} \)[/tex].
### Step 1: Range of [tex]\( U \)[/tex]
First, we need to determine the range of [tex]\( U \)[/tex]. Given that [tex]\( 0 \leq Y_2 \leq Y_1 \leq 1 \)[/tex]:
[tex]\[ U = Y_1 - Y_2 \][/tex]
Given [tex]\( Y_1 \)[/tex] ranges from 0 to 1 and [tex]\( Y_2 \)[/tex] from 0 to [tex]\( Y_1 \)[/tex]:
[tex]\[ 0 \leq U \leq 1 \][/tex]
### Step 2: Determine the Joint Pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex]
The joint pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex] is:
[tex]\[ f(y_1, y_2) = \left\{ \begin{array}{ll} 3 y_1 & \text{if } 0 \leq y_2 \leq y_1 \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 3: Transformation to New Variable [tex]\( U \)[/tex]
We need to express [tex]\( f_{U}(u) \)[/tex] in terms of the new variable [tex]\( U \)[/tex].
Define [tex]\( U = Y_1 - Y_2 \)[/tex]. Thus, [tex]\( Y_2 = Y_1 - U \)[/tex].
For a given [tex]\( u \)[/tex], [tex]\( y_2 = y_1 - u \)[/tex]. Consequently, [tex]\( y_1 \)[/tex] ranges from [tex]\( u \)[/tex] to 1, since [tex]\( y_1 ≥ y_2 \)[/tex]:
[tex]\[ \int_u^1 f(y_1, y_1 - u) dy_1 \][/tex]
### Step 4: Calculate the Pdf of [tex]\( U \)[/tex]
Inserting [tex]\( y_2 = y_1 - u \)[/tex] into [tex]\( f(y_1, y_2) \)[/tex]:
[tex]\[ f(y_1, y_1 - u) = 3 y_1 \][/tex]
So,
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 \][/tex]
### Step 5: Solve the Integral
Performing the integration:
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 = \left[ \frac{3 y_1^2}{2} \right]_u^1 = \frac{3}{2} \left(1^2 - u^2\right) = \frac{3}{2} (1 - u^2) \][/tex]
Hence the probability density function of [tex]\( U \)[/tex] is:
[tex]\[ f_U(u) = \left\{ \begin{array}{ll} \frac{3}{2} (1 - u^2) & \text{if } 0 \leq u \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 6: Expected Value [tex]\( E(U) \)[/tex]
Finally, let's calculate [tex]\( E(U) \)[/tex]:
[tex]\[ E(U) = \int_0^1 u f_U(u) du = \int_0^1 u \frac{3}{2} (1 - u^2) du \][/tex]
Simplifying the integral:
[tex]\[ E(U) = \frac{3}{2} \int_0^1 \left( u - u^3 \right) du = \frac{3}{2} \left( \int_0^1 u du - \int_0^1 u^3 du \right) \][/tex]
Evaluating the integrals:
[tex]\[ \int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2} \][/tex]
[tex]\[ \int_0^1 u^3 du = \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{4} \][/tex]
Combining these:
[tex]\[ E(U) = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8} \][/tex]
Thus, the expected value [tex]\( E(U) \)[/tex] is [tex]\( \frac{3}{8} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.