Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the probability density function (pdf) of [tex]\( U = Y_1 - Y_2 \)[/tex] and subsequently its expected value [tex]\( E(U) \)[/tex], we'll proceed through several steps.
### Step 1: Range of [tex]\( U \)[/tex]
First, we need to determine the range of [tex]\( U \)[/tex]. Given that [tex]\( 0 \leq Y_2 \leq Y_1 \leq 1 \)[/tex]:
[tex]\[ U = Y_1 - Y_2 \][/tex]
Given [tex]\( Y_1 \)[/tex] ranges from 0 to 1 and [tex]\( Y_2 \)[/tex] from 0 to [tex]\( Y_1 \)[/tex]:
[tex]\[ 0 \leq U \leq 1 \][/tex]
### Step 2: Determine the Joint Pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex]
The joint pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex] is:
[tex]\[ f(y_1, y_2) = \left\{ \begin{array}{ll} 3 y_1 & \text{if } 0 \leq y_2 \leq y_1 \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 3: Transformation to New Variable [tex]\( U \)[/tex]
We need to express [tex]\( f_{U}(u) \)[/tex] in terms of the new variable [tex]\( U \)[/tex].
Define [tex]\( U = Y_1 - Y_2 \)[/tex]. Thus, [tex]\( Y_2 = Y_1 - U \)[/tex].
For a given [tex]\( u \)[/tex], [tex]\( y_2 = y_1 - u \)[/tex]. Consequently, [tex]\( y_1 \)[/tex] ranges from [tex]\( u \)[/tex] to 1, since [tex]\( y_1 ≥ y_2 \)[/tex]:
[tex]\[ \int_u^1 f(y_1, y_1 - u) dy_1 \][/tex]
### Step 4: Calculate the Pdf of [tex]\( U \)[/tex]
Inserting [tex]\( y_2 = y_1 - u \)[/tex] into [tex]\( f(y_1, y_2) \)[/tex]:
[tex]\[ f(y_1, y_1 - u) = 3 y_1 \][/tex]
So,
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 \][/tex]
### Step 5: Solve the Integral
Performing the integration:
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 = \left[ \frac{3 y_1^2}{2} \right]_u^1 = \frac{3}{2} \left(1^2 - u^2\right) = \frac{3}{2} (1 - u^2) \][/tex]
Hence the probability density function of [tex]\( U \)[/tex] is:
[tex]\[ f_U(u) = \left\{ \begin{array}{ll} \frac{3}{2} (1 - u^2) & \text{if } 0 \leq u \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 6: Expected Value [tex]\( E(U) \)[/tex]
Finally, let's calculate [tex]\( E(U) \)[/tex]:
[tex]\[ E(U) = \int_0^1 u f_U(u) du = \int_0^1 u \frac{3}{2} (1 - u^2) du \][/tex]
Simplifying the integral:
[tex]\[ E(U) = \frac{3}{2} \int_0^1 \left( u - u^3 \right) du = \frac{3}{2} \left( \int_0^1 u du - \int_0^1 u^3 du \right) \][/tex]
Evaluating the integrals:
[tex]\[ \int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2} \][/tex]
[tex]\[ \int_0^1 u^3 du = \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{4} \][/tex]
Combining these:
[tex]\[ E(U) = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8} \][/tex]
Thus, the expected value [tex]\( E(U) \)[/tex] is [tex]\( \frac{3}{8} \)[/tex].
### Step 1: Range of [tex]\( U \)[/tex]
First, we need to determine the range of [tex]\( U \)[/tex]. Given that [tex]\( 0 \leq Y_2 \leq Y_1 \leq 1 \)[/tex]:
[tex]\[ U = Y_1 - Y_2 \][/tex]
Given [tex]\( Y_1 \)[/tex] ranges from 0 to 1 and [tex]\( Y_2 \)[/tex] from 0 to [tex]\( Y_1 \)[/tex]:
[tex]\[ 0 \leq U \leq 1 \][/tex]
### Step 2: Determine the Joint Pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex]
The joint pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex] is:
[tex]\[ f(y_1, y_2) = \left\{ \begin{array}{ll} 3 y_1 & \text{if } 0 \leq y_2 \leq y_1 \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 3: Transformation to New Variable [tex]\( U \)[/tex]
We need to express [tex]\( f_{U}(u) \)[/tex] in terms of the new variable [tex]\( U \)[/tex].
Define [tex]\( U = Y_1 - Y_2 \)[/tex]. Thus, [tex]\( Y_2 = Y_1 - U \)[/tex].
For a given [tex]\( u \)[/tex], [tex]\( y_2 = y_1 - u \)[/tex]. Consequently, [tex]\( y_1 \)[/tex] ranges from [tex]\( u \)[/tex] to 1, since [tex]\( y_1 ≥ y_2 \)[/tex]:
[tex]\[ \int_u^1 f(y_1, y_1 - u) dy_1 \][/tex]
### Step 4: Calculate the Pdf of [tex]\( U \)[/tex]
Inserting [tex]\( y_2 = y_1 - u \)[/tex] into [tex]\( f(y_1, y_2) \)[/tex]:
[tex]\[ f(y_1, y_1 - u) = 3 y_1 \][/tex]
So,
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 \][/tex]
### Step 5: Solve the Integral
Performing the integration:
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 = \left[ \frac{3 y_1^2}{2} \right]_u^1 = \frac{3}{2} \left(1^2 - u^2\right) = \frac{3}{2} (1 - u^2) \][/tex]
Hence the probability density function of [tex]\( U \)[/tex] is:
[tex]\[ f_U(u) = \left\{ \begin{array}{ll} \frac{3}{2} (1 - u^2) & \text{if } 0 \leq u \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 6: Expected Value [tex]\( E(U) \)[/tex]
Finally, let's calculate [tex]\( E(U) \)[/tex]:
[tex]\[ E(U) = \int_0^1 u f_U(u) du = \int_0^1 u \frac{3}{2} (1 - u^2) du \][/tex]
Simplifying the integral:
[tex]\[ E(U) = \frac{3}{2} \int_0^1 \left( u - u^3 \right) du = \frac{3}{2} \left( \int_0^1 u du - \int_0^1 u^3 du \right) \][/tex]
Evaluating the integrals:
[tex]\[ \int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2} \][/tex]
[tex]\[ \int_0^1 u^3 du = \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{4} \][/tex]
Combining these:
[tex]\[ E(U) = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8} \][/tex]
Thus, the expected value [tex]\( E(U) \)[/tex] is [tex]\( \frac{3}{8} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.