Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Simplify the expression:

[tex]\[ M = 216^{9^{-3^{-0^7}}} + 3(149)^{16^{-3^5}} \][/tex]

Sagot :

Sure! Let's solve the expression [tex]\( M = 216^{9^{-3^{-0^7}}} + 3(149)^{16^{-3^5}} \)[/tex] step-by-step:

1. Simplify the Exponent:
Start with the innermost part of the exponents.

- Zero Power Calculation:
[tex]\[ 0^7 = 0 \][/tex]
Thus, we have:
[tex]\[ -3^{-0^7} = -3^0 = 1 \][/tex]
Then,
[tex]\[ 9^{-3^{-0^7}} = 9^{-1} = \frac{1}{9} \approx 0.111111 \][/tex]

2. First Term Calculation:
[tex]\[ 216^{9^{-3^{-0^7}}} = 216^{0.111111} \][/tex]
Approximating [tex]\( 216^{0.111111} \)[/tex], we get:
[tex]\[ 216^{0.111111} \approx 1.8171205928321397 \][/tex]

3. Simplify the Exponent for the Second Term:
- Calculate the power:
[tex]\[ 3^5 = 243 \][/tex]
Thus:
[tex]\[ 16^{-3^5} = 16^{-243} \][/tex]
Given [tex]\( 16^{-243} \)[/tex] extremely small, it approximates to almost [tex]\( 16^0 \)[/tex]:

Thus:
[tex]\[ 16^{-243} \approx 0 \][/tex]
Then,
[tex]\[ (149)^{16^{-3^5}} = 149^0 = 1 \][/tex]
Therefore,
[tex]\[ 3 \cdot 1 = 3 \][/tex]

4. Final Calculation of M:
Adding the two terms together:
[tex]\[ M = 216^{0.111111} + 3 = 1.8171205928321397 + 3 \approx 4.81712059283214 \][/tex]

Thus, the value of [tex]\( M \)[/tex] is approximately:
[tex]\[ M \approx 4.81712059283214 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.