Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Solve and graph the following inequality:

[tex]\frac{x}{3} - 4 \ \textless \ -2[/tex]


Sagot :

Sure, let's solve the inequality step-by-step:

Given inequality:
[tex]\[ \frac{x}{3} - 4 < -2 \][/tex]

Step 1: Isolate [tex]\(\frac{x}{3}\)[/tex].

First, add 4 to both sides of the inequality to move the constant term on the left side to the right side:
[tex]\[ \frac{x}{3} - 4 + 4 < -2 + 4 \][/tex]
[tex]\[ \frac{x}{3} < 2 \][/tex]

Step 2: Solve for [tex]\(x\)[/tex].

Next, multiply both sides of the inequality by 3 to eliminate the denominator:
[tex]\[ \left( \frac{x}{3} \right) \cdot 3 < 2 \cdot 3 \][/tex]
[tex]\[ x < 6 \][/tex]

So, the solution to the inequality is:
[tex]\[ x < 6 \][/tex]

Step 3: Graph the solution.

To graph the solution [tex]\(x < 6\)[/tex]:

- Draw a number line.
- Locate the point 6 on the number line.
- Since [tex]\(x\)[/tex] is less than 6, draw an open circle at 6 to indicate that 6 is not included in the solution.
- Shade the number line to the left of 6 to represent all values less than 6.

The graph looks like this:

[tex]\[ \begin{array}{cccccccccccc} & & & & & & \circ & & & & & \\ \cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\ \end{array} \][/tex]

The shaded section to the left of 6 represents that all numbers less than 6 are solutions to the inequality.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.