Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the inequality step-by-step:
Given inequality:
[tex]\[ \frac{x}{3} - 4 < -2 \][/tex]
Step 1: Isolate [tex]\(\frac{x}{3}\)[/tex].
First, add 4 to both sides of the inequality to move the constant term on the left side to the right side:
[tex]\[ \frac{x}{3} - 4 + 4 < -2 + 4 \][/tex]
[tex]\[ \frac{x}{3} < 2 \][/tex]
Step 2: Solve for [tex]\(x\)[/tex].
Next, multiply both sides of the inequality by 3 to eliminate the denominator:
[tex]\[ \left( \frac{x}{3} \right) \cdot 3 < 2 \cdot 3 \][/tex]
[tex]\[ x < 6 \][/tex]
So, the solution to the inequality is:
[tex]\[ x < 6 \][/tex]
Step 3: Graph the solution.
To graph the solution [tex]\(x < 6\)[/tex]:
- Draw a number line.
- Locate the point 6 on the number line.
- Since [tex]\(x\)[/tex] is less than 6, draw an open circle at 6 to indicate that 6 is not included in the solution.
- Shade the number line to the left of 6 to represent all values less than 6.
The graph looks like this:
[tex]\[ \begin{array}{cccccccccccc} & & & & & & \circ & & & & & \\ \cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\ \end{array} \][/tex]
The shaded section to the left of 6 represents that all numbers less than 6 are solutions to the inequality.
Given inequality:
[tex]\[ \frac{x}{3} - 4 < -2 \][/tex]
Step 1: Isolate [tex]\(\frac{x}{3}\)[/tex].
First, add 4 to both sides of the inequality to move the constant term on the left side to the right side:
[tex]\[ \frac{x}{3} - 4 + 4 < -2 + 4 \][/tex]
[tex]\[ \frac{x}{3} < 2 \][/tex]
Step 2: Solve for [tex]\(x\)[/tex].
Next, multiply both sides of the inequality by 3 to eliminate the denominator:
[tex]\[ \left( \frac{x}{3} \right) \cdot 3 < 2 \cdot 3 \][/tex]
[tex]\[ x < 6 \][/tex]
So, the solution to the inequality is:
[tex]\[ x < 6 \][/tex]
Step 3: Graph the solution.
To graph the solution [tex]\(x < 6\)[/tex]:
- Draw a number line.
- Locate the point 6 on the number line.
- Since [tex]\(x\)[/tex] is less than 6, draw an open circle at 6 to indicate that 6 is not included in the solution.
- Shade the number line to the left of 6 to represent all values less than 6.
The graph looks like this:
[tex]\[ \begin{array}{cccccccccccc} & & & & & & \circ & & & & & \\ \cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\ \end{array} \][/tex]
The shaded section to the left of 6 represents that all numbers less than 6 are solutions to the inequality.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.