Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's go through the solution step-by-step:
1. Given Information:
- Initial dose of the drug, [tex]\(a\)[/tex]: 500 mg
- Remaining dose after 3 hours, [tex]\(y\)[/tex]: 325 mg
- Time, [tex]\(x\)[/tex]: 3 hours
We are to use the exponential decay model [tex]\(y = a \cdot b^x\)[/tex] to find the base multiplier [tex]\(b\)[/tex].
2. Substitute the given values into the equation [tex]\(y = a \cdot b^x\)[/tex]:
[tex]\[ 325 = 500 \cdot b^3 \][/tex]
3. Solve for [tex]\(b\)[/tex]:
- First, divide both sides of the equation by 500 to isolate [tex]\(b^3\)[/tex]:
[tex]\[ \frac{325}{500} = b^3 \][/tex]
[tex]\[ 0.65 = b^3 \][/tex]
- To find [tex]\(b\)[/tex], we need to take the cube root of 0.65. In mathematical terms, this involves raising 0.65 to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ b = (0.65)^{\frac{1}{3}} \][/tex]
4. Calculate the cube root of 0.65:
- Using a calculator, you can evaluate [tex]\((0.65)^{\frac{1}{3}}\)[/tex]:
[tex]\[ b \approx 0.866239 \][/tex]
5. Result:
- The base multiplier [tex]\(b\)[/tex] is approximately [tex]\(0.866239\)[/tex].
Hence, the exponential decay model for this problem is:
[tex]\[ y = 500 \cdot (0.866)^x \][/tex]
This model describes how the drug's concentration decreases over time. The base multiplier [tex]\(b \approx 0.866239\)[/tex] indicates that approximately 86.62% of the drug's concentration remains each hour.
1. Given Information:
- Initial dose of the drug, [tex]\(a\)[/tex]: 500 mg
- Remaining dose after 3 hours, [tex]\(y\)[/tex]: 325 mg
- Time, [tex]\(x\)[/tex]: 3 hours
We are to use the exponential decay model [tex]\(y = a \cdot b^x\)[/tex] to find the base multiplier [tex]\(b\)[/tex].
2. Substitute the given values into the equation [tex]\(y = a \cdot b^x\)[/tex]:
[tex]\[ 325 = 500 \cdot b^3 \][/tex]
3. Solve for [tex]\(b\)[/tex]:
- First, divide both sides of the equation by 500 to isolate [tex]\(b^3\)[/tex]:
[tex]\[ \frac{325}{500} = b^3 \][/tex]
[tex]\[ 0.65 = b^3 \][/tex]
- To find [tex]\(b\)[/tex], we need to take the cube root of 0.65. In mathematical terms, this involves raising 0.65 to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ b = (0.65)^{\frac{1}{3}} \][/tex]
4. Calculate the cube root of 0.65:
- Using a calculator, you can evaluate [tex]\((0.65)^{\frac{1}{3}}\)[/tex]:
[tex]\[ b \approx 0.866239 \][/tex]
5. Result:
- The base multiplier [tex]\(b\)[/tex] is approximately [tex]\(0.866239\)[/tex].
Hence, the exponential decay model for this problem is:
[tex]\[ y = 500 \cdot (0.866)^x \][/tex]
This model describes how the drug's concentration decreases over time. The base multiplier [tex]\(b \approx 0.866239\)[/tex] indicates that approximately 86.62% of the drug's concentration remains each hour.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.