Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's go through the solution step-by-step:
1. Given Information:
- Initial dose of the drug, [tex]\(a\)[/tex]: 500 mg
- Remaining dose after 3 hours, [tex]\(y\)[/tex]: 325 mg
- Time, [tex]\(x\)[/tex]: 3 hours
We are to use the exponential decay model [tex]\(y = a \cdot b^x\)[/tex] to find the base multiplier [tex]\(b\)[/tex].
2. Substitute the given values into the equation [tex]\(y = a \cdot b^x\)[/tex]:
[tex]\[ 325 = 500 \cdot b^3 \][/tex]
3. Solve for [tex]\(b\)[/tex]:
- First, divide both sides of the equation by 500 to isolate [tex]\(b^3\)[/tex]:
[tex]\[ \frac{325}{500} = b^3 \][/tex]
[tex]\[ 0.65 = b^3 \][/tex]
- To find [tex]\(b\)[/tex], we need to take the cube root of 0.65. In mathematical terms, this involves raising 0.65 to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ b = (0.65)^{\frac{1}{3}} \][/tex]
4. Calculate the cube root of 0.65:
- Using a calculator, you can evaluate [tex]\((0.65)^{\frac{1}{3}}\)[/tex]:
[tex]\[ b \approx 0.866239 \][/tex]
5. Result:
- The base multiplier [tex]\(b\)[/tex] is approximately [tex]\(0.866239\)[/tex].
Hence, the exponential decay model for this problem is:
[tex]\[ y = 500 \cdot (0.866)^x \][/tex]
This model describes how the drug's concentration decreases over time. The base multiplier [tex]\(b \approx 0.866239\)[/tex] indicates that approximately 86.62% of the drug's concentration remains each hour.
1. Given Information:
- Initial dose of the drug, [tex]\(a\)[/tex]: 500 mg
- Remaining dose after 3 hours, [tex]\(y\)[/tex]: 325 mg
- Time, [tex]\(x\)[/tex]: 3 hours
We are to use the exponential decay model [tex]\(y = a \cdot b^x\)[/tex] to find the base multiplier [tex]\(b\)[/tex].
2. Substitute the given values into the equation [tex]\(y = a \cdot b^x\)[/tex]:
[tex]\[ 325 = 500 \cdot b^3 \][/tex]
3. Solve for [tex]\(b\)[/tex]:
- First, divide both sides of the equation by 500 to isolate [tex]\(b^3\)[/tex]:
[tex]\[ \frac{325}{500} = b^3 \][/tex]
[tex]\[ 0.65 = b^3 \][/tex]
- To find [tex]\(b\)[/tex], we need to take the cube root of 0.65. In mathematical terms, this involves raising 0.65 to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ b = (0.65)^{\frac{1}{3}} \][/tex]
4. Calculate the cube root of 0.65:
- Using a calculator, you can evaluate [tex]\((0.65)^{\frac{1}{3}}\)[/tex]:
[tex]\[ b \approx 0.866239 \][/tex]
5. Result:
- The base multiplier [tex]\(b\)[/tex] is approximately [tex]\(0.866239\)[/tex].
Hence, the exponential decay model for this problem is:
[tex]\[ y = 500 \cdot (0.866)^x \][/tex]
This model describes how the drug's concentration decreases over time. The base multiplier [tex]\(b \approx 0.866239\)[/tex] indicates that approximately 86.62% of the drug's concentration remains each hour.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.