Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine within which range the radian measure of a central angle falls, given that the arc on a circle measures [tex]\(250^\circ\)[/tex], we first need to convert the degree measure to radians. The relationship between degrees and radians is given by:
[tex]\[ \text{radians} = \text{degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
So, for [tex]\(250^\circ\)[/tex]:
[tex]\[ 250^\circ \times \left( \frac{\pi}{180} \right) \approx 4.363 \text{ radians} \][/tex]
Now that we have the radian measure of the central angle, let's determine within which range it falls. The ranges given are:
1. [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians
2. [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians
3. [tex]\(\pi\)[/tex] to [tex]\(\frac{3 \pi}{2}\)[/tex] radians
4. [tex]\(\frac{3 \pi}{2}\)[/tex] to [tex]\(2 \pi\)[/tex] radians
Let's convert these ranges to approximate their numeric values in radians:
- [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex]
- [tex]\(0 \approx 0 \)[/tex]
- [tex]\(\frac{\pi}{2} \approx 1.571\)[/tex]
- [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex]
- [tex]\(\frac{\pi}{2} \approx 1.571 \)[/tex]
- [tex]\(\pi \approx 3.142\)[/tex]
- [tex]\(\pi\)[/tex] to [tex]\(\frac{3 \pi}{2}\)[/tex]
- [tex]\(\pi \approx 3.142\)[/tex]
- [tex]\(\frac{3 \pi}{2} \approx 4.712\)[/tex]
- [tex]\(\frac{3 \pi}{2}\)[/tex] to [tex]\(2 \pi\)[/tex]
- [tex]\(\frac{3 \pi}{2} \approx 4.712\)[/tex]
- [tex]\(2 \pi \approx 6.283\)[/tex]
We compare the radian measure [tex]\(4.363\)[/tex] to these ranges:
- [tex]\(0\)[/tex] to [tex]\(1.571\)[/tex] – the radian measure [tex]\(4.363\)[/tex] is not within this range.
- [tex]\(1.571\)[/tex] to [tex]\(3.142\)[/tex] – the radian measure [tex]\(4.363\)[/tex] is not within this range.
- [tex]\(3.142\)[/tex] to [tex]\(4.712\)[/tex] – the radian measure [tex]\(4.363\)[/tex] falls within this range.
- [tex]\(4.712\)[/tex] to [tex]\(6.283\)[/tex] – the radian measure [tex]\(4.363\)[/tex] is not within this range.
Thus, the radian measure of the central angle [tex]\(4.363\)[/tex] radians falls within the range [tex]\( \pi \)[/tex] to [tex]\( \frac{3 \pi}{2} \)[/tex] radians.
[tex]\[ \text{radians} = \text{degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
So, for [tex]\(250^\circ\)[/tex]:
[tex]\[ 250^\circ \times \left( \frac{\pi}{180} \right) \approx 4.363 \text{ radians} \][/tex]
Now that we have the radian measure of the central angle, let's determine within which range it falls. The ranges given are:
1. [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians
2. [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians
3. [tex]\(\pi\)[/tex] to [tex]\(\frac{3 \pi}{2}\)[/tex] radians
4. [tex]\(\frac{3 \pi}{2}\)[/tex] to [tex]\(2 \pi\)[/tex] radians
Let's convert these ranges to approximate their numeric values in radians:
- [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex]
- [tex]\(0 \approx 0 \)[/tex]
- [tex]\(\frac{\pi}{2} \approx 1.571\)[/tex]
- [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex]
- [tex]\(\frac{\pi}{2} \approx 1.571 \)[/tex]
- [tex]\(\pi \approx 3.142\)[/tex]
- [tex]\(\pi\)[/tex] to [tex]\(\frac{3 \pi}{2}\)[/tex]
- [tex]\(\pi \approx 3.142\)[/tex]
- [tex]\(\frac{3 \pi}{2} \approx 4.712\)[/tex]
- [tex]\(\frac{3 \pi}{2}\)[/tex] to [tex]\(2 \pi\)[/tex]
- [tex]\(\frac{3 \pi}{2} \approx 4.712\)[/tex]
- [tex]\(2 \pi \approx 6.283\)[/tex]
We compare the radian measure [tex]\(4.363\)[/tex] to these ranges:
- [tex]\(0\)[/tex] to [tex]\(1.571\)[/tex] – the radian measure [tex]\(4.363\)[/tex] is not within this range.
- [tex]\(1.571\)[/tex] to [tex]\(3.142\)[/tex] – the radian measure [tex]\(4.363\)[/tex] is not within this range.
- [tex]\(3.142\)[/tex] to [tex]\(4.712\)[/tex] – the radian measure [tex]\(4.363\)[/tex] falls within this range.
- [tex]\(4.712\)[/tex] to [tex]\(6.283\)[/tex] – the radian measure [tex]\(4.363\)[/tex] is not within this range.
Thus, the radian measure of the central angle [tex]\(4.363\)[/tex] radians falls within the range [tex]\( \pi \)[/tex] to [tex]\( \frac{3 \pi}{2} \)[/tex] radians.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.