Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Find the equation of the line through the point [tex]\((9,-10)\)[/tex] that is perpendicular to the line with the equation [tex]\(y = -\frac{4}{3}x + 14\)[/tex].

The equation is [tex]\(\square\)[/tex]. (Be sure to enter your answer as an equation.)


Sagot :

To find the equation of the line that passes through the point [tex]\((9, -10)\)[/tex] and is perpendicular to the line with equation [tex]\(y = -\frac{4}{3}x + 14\)[/tex], follow these steps:

1. Identify the slope of the given line:
The slope of the given line [tex]\(y = -\frac{4}{3}x + 14\)[/tex] is [tex]\(-\frac{4}{3}\)[/tex].

2. Find the perpendicular slope:
The slope of a line that is perpendicular to another line is the negative reciprocal of the slope of the original line.
So, if the original slope is [tex]\(-\frac{4}{3}\)[/tex], the perpendicular slope ([tex]\(m\)[/tex]) is:
[tex]\[ m = -\frac{1}{-\frac{4}{3}} = \frac{3}{4} \][/tex]

3. Use the point-slope form of the equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the given point.
Plugging in the perpendicular slope [tex]\(m = \frac{3}{4}\)[/tex] and the point [tex]\((9, -10)\)[/tex], we get:
[tex]\[ y - (-10) = \frac{3}{4}(x - 9) \][/tex]
Simplify:
[tex]\[ y + 10 = \frac{3}{4}(x - 9) \][/tex]

4. Distribute and simplify:
Now, distribute [tex]\(\frac{3}{4}\)[/tex] to [tex]\(x - 9\)[/tex]:
[tex]\[ y + 10 = \frac{3}{4}x - \frac{3}{4} \cdot 9 \][/tex]
[tex]\[ y + 10 = \frac{3}{4}x - \frac{27}{4} \][/tex]
Subtract 10 from both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = \frac{3}{4}x - \frac{27}{4} - 10 \][/tex]
Express [tex]\(-10\)[/tex] with a common denominator:
[tex]\[ -10 = -\frac{40}{4} \][/tex]
Substitute this back into the equation:
[tex]\[ y = \frac{3}{4}x - \frac{27}{4} - \frac{40}{4} \][/tex]
Combine the fractions:
[tex]\[ y = \frac{3}{4}x - \frac{67}{4} \][/tex]

Thus, the equation of the line that passes through [tex]\((9, -10)\)[/tex] and is perpendicular to [tex]\(y = -\frac{4}{3}x + 14\)[/tex] is:
[tex]\[ y = \frac{3}{4}x - \frac{67}{4} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.