Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve the given system of equations step by step. The system of equations is:
[tex]\[ \begin{cases} 3x = 7 + y \\ 5x - 9y = 41 \end{cases} \][/tex]
### Step 1: Solve for [tex]\( y \)[/tex] from the first equation.
Start with the first equation:
[tex]\[ 3x = 7 + y \][/tex]
Rearrange it to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 7 \][/tex]
### Step 2: Substitute [tex]\( y \)[/tex] into the second equation.
Take the expression for [tex]\( y \)[/tex] from the first equation and substitute it into the second equation [tex]\( 5x - 9y = 41 \)[/tex]:
[tex]\[ 5x - 9(3x - 7) = 41 \][/tex]
Now, distribute [tex]\(-9\)[/tex] through the parentheses:
[tex]\[ 5x - 27x + 63 = 41 \][/tex]
Combine like terms:
[tex]\[ -22x + 63 = 41 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex].
Isolate [tex]\( x \)[/tex] by moving 63 to the right-hand side:
[tex]\[ -22x = 41 - 63 \][/tex]
[tex]\[ -22x = -22 \][/tex]
Divide both sides by [tex]\(-22\)[/tex]:
[tex]\[ x = 1 \][/tex]
### Step 4: Find [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex].
Now that we have [tex]\( x = 1 \)[/tex], substitute it back into the expression for [tex]\( y \)[/tex] that we derived from the first equation:
[tex]\[ y = 3(1) - 7 \][/tex]
[tex]\[ y = 3 - 7 \][/tex]
[tex]\[ y = -4 \][/tex]
So the solution to the system of equations is:
[tex]\[ x = 1 \][/tex]
[tex]\[ y = -4 \][/tex]
Therefore, the solution set for the system of equations is:
[tex]\[ (x, y) = (1, -4) \][/tex]
[tex]\[ \begin{cases} 3x = 7 + y \\ 5x - 9y = 41 \end{cases} \][/tex]
### Step 1: Solve for [tex]\( y \)[/tex] from the first equation.
Start with the first equation:
[tex]\[ 3x = 7 + y \][/tex]
Rearrange it to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 7 \][/tex]
### Step 2: Substitute [tex]\( y \)[/tex] into the second equation.
Take the expression for [tex]\( y \)[/tex] from the first equation and substitute it into the second equation [tex]\( 5x - 9y = 41 \)[/tex]:
[tex]\[ 5x - 9(3x - 7) = 41 \][/tex]
Now, distribute [tex]\(-9\)[/tex] through the parentheses:
[tex]\[ 5x - 27x + 63 = 41 \][/tex]
Combine like terms:
[tex]\[ -22x + 63 = 41 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex].
Isolate [tex]\( x \)[/tex] by moving 63 to the right-hand side:
[tex]\[ -22x = 41 - 63 \][/tex]
[tex]\[ -22x = -22 \][/tex]
Divide both sides by [tex]\(-22\)[/tex]:
[tex]\[ x = 1 \][/tex]
### Step 4: Find [tex]\( y \)[/tex] using the value of [tex]\( x \)[/tex].
Now that we have [tex]\( x = 1 \)[/tex], substitute it back into the expression for [tex]\( y \)[/tex] that we derived from the first equation:
[tex]\[ y = 3(1) - 7 \][/tex]
[tex]\[ y = 3 - 7 \][/tex]
[tex]\[ y = -4 \][/tex]
So the solution to the system of equations is:
[tex]\[ x = 1 \][/tex]
[tex]\[ y = -4 \][/tex]
Therefore, the solution set for the system of equations is:
[tex]\[ (x, y) = (1, -4) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.