Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find all solutions to the equation [tex]\(2 \sin (\theta) = -\sqrt{2}\)[/tex] within the interval [tex]\(0 \leq \theta < 2\pi\)[/tex], follow these steps:
1. Isolate the sine function:
[tex]\[ 2 \sin (\theta) = -\sqrt{2} \][/tex]
Divide both sides by 2 to get:
[tex]\[ \sin (\theta) = -\frac{\sqrt{2}}{2} \][/tex]
2. Determine the reference angle:
We know that for [tex]\(\sin (\alpha) = -\frac{\sqrt{2}}{2}\)[/tex], the reference angle [tex]\(\alpha\)[/tex] where [tex]\(\sin (\alpha) = \frac{\sqrt{2}}{2}\)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex].
3. Find the general solutions:
Since the sine function is negative in the third and fourth quadrants, the angles corresponding to [tex]\(\sin (\theta) = -\frac{\sqrt{2}}{2}\)[/tex] within one period [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \pi + \frac{\pi}{4} \quad \text{and} \quad \theta = 2\pi - \frac{\pi}{4} \][/tex]
4. Calculate the exact values:
[tex]\[ \theta = \pi + \frac{\pi}{4} = \frac{4\pi}{4} + \frac{\pi}{4} = \frac{5\pi}{4} \][/tex]
[tex]\[ \theta = 2\pi - \frac{\pi}{4} = \frac{8\pi}{4} - \frac{\pi}{4} = \frac{7\pi}{4} \][/tex]
5. List the solutions within the given interval:
The solutions to [tex]\(2 \sin (\theta) = -\sqrt{2}\)[/tex] on the interval [tex]\(0 \leq \theta < 2\pi\)[/tex] are:
[tex]\[ \theta = \boxed{\frac{5\pi}{4}, \frac{7\pi}{4}} \][/tex]
1. Isolate the sine function:
[tex]\[ 2 \sin (\theta) = -\sqrt{2} \][/tex]
Divide both sides by 2 to get:
[tex]\[ \sin (\theta) = -\frac{\sqrt{2}}{2} \][/tex]
2. Determine the reference angle:
We know that for [tex]\(\sin (\alpha) = -\frac{\sqrt{2}}{2}\)[/tex], the reference angle [tex]\(\alpha\)[/tex] where [tex]\(\sin (\alpha) = \frac{\sqrt{2}}{2}\)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex].
3. Find the general solutions:
Since the sine function is negative in the third and fourth quadrants, the angles corresponding to [tex]\(\sin (\theta) = -\frac{\sqrt{2}}{2}\)[/tex] within one period [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \pi + \frac{\pi}{4} \quad \text{and} \quad \theta = 2\pi - \frac{\pi}{4} \][/tex]
4. Calculate the exact values:
[tex]\[ \theta = \pi + \frac{\pi}{4} = \frac{4\pi}{4} + \frac{\pi}{4} = \frac{5\pi}{4} \][/tex]
[tex]\[ \theta = 2\pi - \frac{\pi}{4} = \frac{8\pi}{4} - \frac{\pi}{4} = \frac{7\pi}{4} \][/tex]
5. List the solutions within the given interval:
The solutions to [tex]\(2 \sin (\theta) = -\sqrt{2}\)[/tex] on the interval [tex]\(0 \leq \theta < 2\pi\)[/tex] are:
[tex]\[ \theta = \boxed{\frac{5\pi}{4}, \frac{7\pi}{4}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.