Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\(-\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha)\)[/tex] for [tex]\(\alpha\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:
1. Simplify the Equation:
Start by simplifying the given equation. Combine like terms involving [tex]\(\cos(\alpha)\)[/tex]:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha) \][/tex]
2. Isolate the [tex]\(\cos(\alpha)\)[/tex] Term:
Subtract [tex]\(\cos(\alpha)\)[/tex] from both sides of the equation:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) - \cos(\alpha) = 0 \][/tex]
Simplify the expression:
[tex]\[ -\sqrt{2} + 2 \cos(\alpha) = 0 \][/tex]
3. Solve for [tex]\(\cos(\alpha)\)[/tex]:
Add [tex]\(\sqrt{2}\)[/tex] to both sides to isolate the cosine term:
[tex]\[ 2 \cos(\alpha) = \sqrt{2} \][/tex]
Now, divide both sides by 2:
[tex]\[ \cos(\alpha) = \frac{\sqrt{2}}{2} \][/tex]
4. Determine the Solutions:
The value [tex]\(\frac{\sqrt{2}}{2}\)[/tex] corresponds to specific angles [tex]\(\alpha\)[/tex] where the cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. These angles in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4} \quad \text{and} \quad \alpha = \frac{7\pi}{4} \][/tex]
5. Write the Final Answer:
Thus, the solutions for [tex]\(\alpha\)[/tex] that satisfy the given equation within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
Therefore, the exact simplified answers in radian units are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
1. Simplify the Equation:
Start by simplifying the given equation. Combine like terms involving [tex]\(\cos(\alpha)\)[/tex]:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha) \][/tex]
2. Isolate the [tex]\(\cos(\alpha)\)[/tex] Term:
Subtract [tex]\(\cos(\alpha)\)[/tex] from both sides of the equation:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) - \cos(\alpha) = 0 \][/tex]
Simplify the expression:
[tex]\[ -\sqrt{2} + 2 \cos(\alpha) = 0 \][/tex]
3. Solve for [tex]\(\cos(\alpha)\)[/tex]:
Add [tex]\(\sqrt{2}\)[/tex] to both sides to isolate the cosine term:
[tex]\[ 2 \cos(\alpha) = \sqrt{2} \][/tex]
Now, divide both sides by 2:
[tex]\[ \cos(\alpha) = \frac{\sqrt{2}}{2} \][/tex]
4. Determine the Solutions:
The value [tex]\(\frac{\sqrt{2}}{2}\)[/tex] corresponds to specific angles [tex]\(\alpha\)[/tex] where the cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. These angles in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4} \quad \text{and} \quad \alpha = \frac{7\pi}{4} \][/tex]
5. Write the Final Answer:
Thus, the solutions for [tex]\(\alpha\)[/tex] that satisfy the given equation within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
Therefore, the exact simplified answers in radian units are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.