Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve the following equation for [tex]\(\alpha\)[/tex] over the interval [tex]\([0, 2\pi)\)[/tex], giving exact simplified answers in radian units. If the equation has no solution, enter DNE. Multiple solutions should be entered as a comma-separated list.

[tex]\[
-\sqrt{2} + 3 \cos (\alpha) = \cos (\alpha)
\][/tex]

[tex]\[
\alpha =
\][/tex]


Sagot :

To solve the equation [tex]\(-\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha)\)[/tex] for [tex]\(\alpha\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:

1. Simplify the Equation:
Start by simplifying the given equation. Combine like terms involving [tex]\(\cos(\alpha)\)[/tex]:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha) \][/tex]

2. Isolate the [tex]\(\cos(\alpha)\)[/tex] Term:
Subtract [tex]\(\cos(\alpha)\)[/tex] from both sides of the equation:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) - \cos(\alpha) = 0 \][/tex]
Simplify the expression:
[tex]\[ -\sqrt{2} + 2 \cos(\alpha) = 0 \][/tex]

3. Solve for [tex]\(\cos(\alpha)\)[/tex]:
Add [tex]\(\sqrt{2}\)[/tex] to both sides to isolate the cosine term:
[tex]\[ 2 \cos(\alpha) = \sqrt{2} \][/tex]
Now, divide both sides by 2:
[tex]\[ \cos(\alpha) = \frac{\sqrt{2}}{2} \][/tex]

4. Determine the Solutions:
The value [tex]\(\frac{\sqrt{2}}{2}\)[/tex] corresponds to specific angles [tex]\(\alpha\)[/tex] where the cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. These angles in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4} \quad \text{and} \quad \alpha = \frac{7\pi}{4} \][/tex]

5. Write the Final Answer:
Thus, the solutions for [tex]\(\alpha\)[/tex] that satisfy the given equation within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]

Therefore, the exact simplified answers in radian units are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.