Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(-\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha)\)[/tex] for [tex]\(\alpha\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:
1. Simplify the Equation:
Start by simplifying the given equation. Combine like terms involving [tex]\(\cos(\alpha)\)[/tex]:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha) \][/tex]
2. Isolate the [tex]\(\cos(\alpha)\)[/tex] Term:
Subtract [tex]\(\cos(\alpha)\)[/tex] from both sides of the equation:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) - \cos(\alpha) = 0 \][/tex]
Simplify the expression:
[tex]\[ -\sqrt{2} + 2 \cos(\alpha) = 0 \][/tex]
3. Solve for [tex]\(\cos(\alpha)\)[/tex]:
Add [tex]\(\sqrt{2}\)[/tex] to both sides to isolate the cosine term:
[tex]\[ 2 \cos(\alpha) = \sqrt{2} \][/tex]
Now, divide both sides by 2:
[tex]\[ \cos(\alpha) = \frac{\sqrt{2}}{2} \][/tex]
4. Determine the Solutions:
The value [tex]\(\frac{\sqrt{2}}{2}\)[/tex] corresponds to specific angles [tex]\(\alpha\)[/tex] where the cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. These angles in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4} \quad \text{and} \quad \alpha = \frac{7\pi}{4} \][/tex]
5. Write the Final Answer:
Thus, the solutions for [tex]\(\alpha\)[/tex] that satisfy the given equation within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
Therefore, the exact simplified answers in radian units are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
1. Simplify the Equation:
Start by simplifying the given equation. Combine like terms involving [tex]\(\cos(\alpha)\)[/tex]:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) = \cos(\alpha) \][/tex]
2. Isolate the [tex]\(\cos(\alpha)\)[/tex] Term:
Subtract [tex]\(\cos(\alpha)\)[/tex] from both sides of the equation:
[tex]\[ -\sqrt{2} + 3 \cos(\alpha) - \cos(\alpha) = 0 \][/tex]
Simplify the expression:
[tex]\[ -\sqrt{2} + 2 \cos(\alpha) = 0 \][/tex]
3. Solve for [tex]\(\cos(\alpha)\)[/tex]:
Add [tex]\(\sqrt{2}\)[/tex] to both sides to isolate the cosine term:
[tex]\[ 2 \cos(\alpha) = \sqrt{2} \][/tex]
Now, divide both sides by 2:
[tex]\[ \cos(\alpha) = \frac{\sqrt{2}}{2} \][/tex]
4. Determine the Solutions:
The value [tex]\(\frac{\sqrt{2}}{2}\)[/tex] corresponds to specific angles [tex]\(\alpha\)[/tex] where the cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. These angles in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4} \quad \text{and} \quad \alpha = \frac{7\pi}{4} \][/tex]
5. Write the Final Answer:
Thus, the solutions for [tex]\(\alpha\)[/tex] that satisfy the given equation within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
Therefore, the exact simplified answers in radian units are:
[tex]\[ \alpha = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.